首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   3篇
  国内免费   4篇
综合类   1篇
化学工业   19篇
金属工艺   4篇
能源动力   14篇
无线电   15篇
一般工业技术   12篇
冶金工业   1篇
自动化技术   2篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   7篇
  2014年   6篇
  2013年   6篇
  2012年   8篇
  2011年   7篇
  2010年   9篇
  2009年   6篇
  2007年   1篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
1.
Three novel organic dyes adopting fully-fused coplanar heteroarene as the donor moieties end-capped with two cyanoacrylic acids as acceptors and anchoring groups have been synthesized, characterized, and used as the sensitizers for dye-sensitized solar cells (DSSCs). The photophysical and electrochemical properties of the novel dyes and the characteristics of the DSSCs based on the novel organic dyes were investigated. The incorporation of the coplanar cores with electron-donating N-bridges are beneficial for the better intramolecular charge transfer (ICT), giving these new dyes good light-harvesting capability. The LUMO energy levels of these coplanar heteroacene-based dyes are sufficiently high for the efficient electron injection to TiO2 upon photo-excitation, while the suitable HOMOs allow the regeneration of oxidized dyes with the electrolyte redox (I/I3). The structural features of the coplanar cores (penta vs. hexa heteroarene) as well as the alkyl substitutions play crucial roles in governing the physical properties and device performance. Among these three novel organic sensitizers, the EHTt dye composed of a fully fused hexa-arene core and less bulky N-alkyl groups caused the DSSC to show the best photovoltaic performance with an open-circuit voltage (VOC) of 0.58 V, a short-circuit photocurrent density (JSC) of 13.72 mA/cm2, and a fill factor (FF) of 0.69, yielding an overall power conversion efficiency (PCE) of 5.52% under AM 1.5G solar irradiation.  相似文献   
2.
Structural and electronic properties of eight isolated azo dyes (ArNNAr′, where Ar and Ar′ denote the aryl groups containing benzene and naphthalene skeletons, respectively) were investigated by density functional theory (DFT) based on the B3LYP/6-31G(d,p) and TD-B3LYP/6-311G(d,p) methods The effect of methanol solvent on the structural and electronic properties of the azo dyes was elucidated by employing a polarizable continuum model (PCM). Then, the azo dyes adsorbed onto the anatase TiO2 (101) slab surface through a carboxyl group. The geometries and electronic structures of the adsorption complexes were determined using periodic DFT based on the PWC/DNP method. The calculated adsorption energies indicate that the adsorbed dyes preferentially take configuration of the bidentate bridging rather than chelating or monodentate ester-type geometries. Furthermore, the azo compounds having two carboxyl groups are coordinated to the TiO2 surface more preferentially through the carboxyl group connecting to the benzene skeleton than through that connecting to the naphthalene skeleton. The dihedral angles (ΦB-N) between the benzene- and naphthalene-skeleton moieties are smaller than 10° for the adsorbed azo compounds containing one carboxyl group. In contrast, ΦB-N > 30° are obtained for the adsorbed azo compounds containing two carboxyl groups. The almost planar conformations of the former appear to strengthen both π-electrons conjugation and electronic coupling between low-lying unoccupied molecular orbitals of the azo dyes and the conduction band of TiO2. On the other hand, such coupling is very weak for the latter, leading to a shift of the Fermi level of TiO2 in the lower-energy direction. The obtained results are useful to the design and synthesize novel azo-dye-based molecules that give rise to higher photovoltaic performances of the dye-sensitized solar cells.  相似文献   
3.
以碳纳米管(CNTs)为原料,采用电沉积方法制备了染料敏化太阳能电池的对电极。研究了电沉积过程中外加电压、水浴温度、沉积时间对CNTs对电极及其组装电池性能的影响。用扫描电子显微镜对CNTs薄膜的表面形貌进行表征,通过电池的短路电流密度、开路电压、填充因子和光电转换效率等指标来表征CNTs对电极组装电池的性能。结果表明,当外加电压为20V、电沉积时间为10min、水浴温度为65℃时,CNTs对电极组装的电池光电转换性能最佳,为3.77%。  相似文献   
4.
In this study, the P25 titanium dioxide (TiO2) nanoparticle (NP) thin film was coated on the fluorine-doped tin oxide (FTO) glass substrate by a doctor blade method. The film then compressed mechanically to be the photoanode of dye-sensitized solar cells (DSSCs). Various compression pressures on TiO2 NP film were tested to optimize the performance of DSSCs. The mechanical compression reduces TiO2 inter-particle distance improving the electron transport efficiency. The UV–vis spectrophotometer and electrochemical impedance spectroscopy (EIS) were employed to quantify the light-harvesting efficiency and the charge transport impedance at various interfaces in DSSC, respectively. The incident photon-to-current conversion efficiency was also monitored. The results show that when the DSSC fabricated by the TiO2 NP thin film compressed at pressure of 279 kg/cm2, the minimum resistance of 9.38 Ω at dye/TiO2 NP/electrolyte interfaces, the maximum short-circuit photocurrent density of 15.11 mA/cm2, and the photoelectric conversion efficiency of 5.94% were observed. Compared to the DSSC fabricated by the non-compression of TiO2 NP thin film, the overall conversion efficiency is improved over 19.5%. The study proves that under suitable compression pressure the performance of DSSC can be optimized.  相似文献   
5.
Quasi‐solid‐state dye‐sensitized solar cells (DSSCs) fabricated with lightweight flexible substrates have a great potential in wearable electronic devices for in situ powering. However, the poor lifespan of these DSSCs limits their practical application. Strong mechanical stresses involved in practical applications cause breakage of the electrode/electrolyte interface in the DSSCs greatly affecting their performance and lifetime. Here, a mechanically robust, low‐cost, long‐lasting, and environment‐friendly quasi‐solid‐state DSSC using a smart thermoreversible water‐based polymer gel electrolyte with self‐healing characteristics at a low temperature (below 0 °C) is demonstrated. When the performance of the flexible DSSC is hindered by strong mechanical stresses (i.e., from multiple bending/twisting/shrinking actions), a simple cooling treatment can regenerate the electrode/electrolyte interface and recover the performance close to the initial level. A performance recovery as high as 94% is proven possible even after 300 cycles of 90° bending. To the best of our knowledge, this is the first aqueous DSSC device with self‐healing behavior, using a smart thermoreversible polymer gel electrolyte, which provides a new perspective in flexible wearable solid‐state photovoltaic devices.  相似文献   
6.
Ho Wan Ham 《Thin solid films》2010,518(22):6558-6563
Indoline dye sensitizers were designed and studied theoretically to increase molar extinction coefficients in the visible to near infrared region for solar-cell devices. To gain insight into dye sensitizers' structural, electronic, and optical properties, DFT/TDDFT calculations were performed on a series of dye sensitizers derived from the D149. The good agreement between the experimental and TDDFT calculated absorption spectra of the D149 sensitizer allowed us to provide a detailed assessment of the main spectral features of a series of dye sensitizers. Increase in the conjugation length resulted in a more red-shifted spectral response and less positive oxidation potential than that of the D149. The dye with the dimethylfluorene group showed stronger absorption bands due to a large dipole moment. The calculated dipoles for the dye series correlate well with the observed strong absorption bands of the electronic spectra. These results provided useful clues for the molecular engineering of efficient organic dye sensitizers.  相似文献   
7.
钌系光敏化剂作为染料敏化太阳能电池(DSSC)敏化剂组件中最重要光敏化剂之一,近年来受到国内外研究人员的重视及研究。其中,以羧酸联吡啶钌配合物为光敏化剂的DSSC器件表现出最好的综合性能。简要介绍了钌系光敏剂的结构,以及其性能的主要影响因素。按照各个光敏化剂的结构,分别阐述了固定配体(含羧基、磺酸基等)和辅助配体(二联吡啶衍生物等)对钌系光敏化剂综合性能的影响,同时给出了对应的各类光敏化剂最新研究进展。  相似文献   
8.
In this communication,the synthesis and structural,morphological,optical,and photo-electrochemical properties of TiO_2 and CaCO_3/TiO_2 nanoparticles as well as their applications in dye sensitized solar cells(DSSCs),have been reported.In an X-ray diffraction pattern of CaCO_3/TiO_2 nanoparticles,the peak at 29.41°of CaCO_3 has been detected,demonstrating its coating on the surface of TiO_2,which is further verified using high resolution-transmission electron microscopy,energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy.The strong quenching in photoluminescence emission,in the case of CaCO_3/TiO_2nanoparticles,has been attributed to the decrease in recombination rate of photo-generated electron—hole pairs.In the case of UV—visible reflectance spectra,the absorption edge for CaCO_3/TiO_2 nanoparticles has slightly been found to be blue-shifted as compared to bare TiO_2 nanoparticles,which corresponds to an increase in energy band gap of the former.The dye desorption studies reveal that CaCO_3/TiO_2 electrodes adsorbed more dye than the bare TiO_2 electrode.CaCO_3/TiO_2 based DSSC show improved photoelectrochemical properties compared to the bare TiO_2 based DSSC as CaCO_3 coating on TiO_2 forms an energy barrier,and,consequently suppressing the charge recombination,and,thus,improving the overall energy conversion efficiency(η) from 0.46%to 1.44%under the illumination of simulated light of 100 mW/cm~2.  相似文献   
9.
One dimensional (1-D) CdS nanowires have been grown through a low temperature chemical route and have been sensitized with eosin-G and ethyl eosin dyes to broaden the absorption spectrum of CdS and to enhance the photoelectrochemical (PEC) performance under illumination. The used method is advantageous due to its simplicity, low cost, scalability, and controllability. Interestingly, eosin-G and ethyl eosin dyes yield nearly four- and six-fold increase in device efficiency compared to bare CdS when tested in dye-sensitized solar cell assembly. Structural, surface morphological, optical, and surface wettability studies have been formulated for CdS, whereas identification of materials along with PEC investigations were conducted through current density–voltage (J-V), external quantum efficiency (EQE), characteristics under the illumination of 94.6 mW/cm2 (AM 1.5G), and electrochemical impedance spectroscopy (EIS).  相似文献   
10.
A series of TiO2–graphene stacked photoanodes for dye-sensitized solar cells (DSSCs) were fabricated by electrospray (E-spray) deposition. Among devices incorporating single graphene layer with different deposition times, device with 1 min graphene deposition gave the best performance. For multi-graphene-layer involved devices, best result was obtained with 3 layers of graphene. The working principles were analyzed by scanning electron microscopy, transmittance spectra, electrochemical impedance spectroscopy and incident-photo-conversion efficiency data. We found that although graphene layers incorporated in TiO2 photoanode slightly decreased dye adsorption, they were able to significantly improve the electron transport, and the charge recombination at the interfaces of TiO2/dye and TiO2/electrolyte were greatly suppressed, leading to dramatic improvement in power conversion efficiency. When inserting three layers of pure graphene into the TiO2 photoanode, high efficiency of 8.9% was obtained, constituting an over 23.6% improvement. Further increasing graphene layers to five, although electron lifetimes is the longest, both the largest charge transfer resistance and the least amount of the dye loading lead to the lowest device efficiency. Our work demonstrated, that pure graphene layer can be successfully incorporated into TiO2 photoanode by E-spray method with easiness of thickness control and the photoanode with graphene/TiO2 alternatively layered structure is an excellent candidate for DSSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号