首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14478篇
  免费   494篇
  国内免费   725篇
电工技术   112篇
综合类   541篇
化学工业   2610篇
金属工艺   1869篇
机械仪表   889篇
建筑科学   98篇
矿业工程   71篇
能源动力   481篇
轻工业   328篇
水利工程   47篇
石油天然气   123篇
武器工业   47篇
无线电   2069篇
一般工业技术   5285篇
冶金工业   293篇
原子能技术   598篇
自动化技术   236篇
  2024年   12篇
  2023年   126篇
  2022年   197篇
  2021年   236篇
  2020年   267篇
  2019年   231篇
  2018年   255篇
  2017年   385篇
  2016年   310篇
  2015年   339篇
  2014年   608篇
  2013年   897篇
  2012年   733篇
  2011年   1419篇
  2010年   964篇
  2009年   1074篇
  2008年   981篇
  2007年   852篇
  2006年   653篇
  2005年   657篇
  2004年   622篇
  2003年   609篇
  2002年   517篇
  2001年   274篇
  2000年   285篇
  1999年   269篇
  1998年   273篇
  1997年   214篇
  1996年   181篇
  1995年   157篇
  1994年   182篇
  1993年   135篇
  1992年   125篇
  1991年   134篇
  1990年   126篇
  1989年   90篇
  1988年   67篇
  1987年   48篇
  1986年   35篇
  1985年   38篇
  1984年   40篇
  1983年   28篇
  1982年   23篇
  1981年   7篇
  1980年   10篇
  1979年   4篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
1.
Experimental and theoretical studies are performed in order to illuminate, for first time, the intercalation mechanism of polycyclic aromatic molecules into graphite oxide. Two representative molecules of this family, aniline and naphthalene amine are investigated. After intercalation, aniline molecules prefer to covalently connect to the graphene oxide matrix via chemical grafting, while napthalene amine molecules bind with the graphene oxide surface through π–π interactions. The presence of intercalated aromatic molecules between the graphene oxide layers is demonstrated by X‐ray diffraction, while the type of interaction between graphene oxide and polycyclic organic molecules is elucidated by X‐ray photoelectron spectroscopy. Combined quantum mechanical and molecular mechanical calculations describe the intercalation mechanism and the aniline grafting, rationalizing the experimental data. The present work opens new perspectives for the interaction of various aromatic molecules with graphite oxide and the so‐called “intercalation chemistry”.  相似文献   
2.
An equiatomic CoCrFeNiMn high-entropy alloy was synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). During MA, a solid solution with refined microstructure of 10 nm which consists of a FCC phase and a BCC phase was formed. After SPS consolidation, only one FCC phase can be detected in the HEA bulks. The as-sintered bulks exhibit high compressive strength of 1987 MPa. An interesting magnetic transition associated with the structure coarsening and phase transformation was observed during SPS process.  相似文献   
3.
In this article, two novel kinds of focusing elements as reflectors are analyzed and compared. One is the grooved Fresnel zone plate reflector with continuous phase‐correcting. The other called subzone paraboloid reflector, has the profile that consists of a series of paraboloids. Their diffraction efficiencies and bandwidths are described. The two elements still preserve the advantages of Fresnel zone plates, namely, low profile, high efficiency, and simple fabrication. Two dual‐reflector antennas using the proposed focusing elements as the main reflectors are simulated and the results show that these antennas have good radiation performances. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:101–108, 2015.  相似文献   
4.
The visible light driven Bi2MoO6 photocatalyst doped with different contents of Ag nanoparticles was successfully synthesized by a combination of hydrothermal and sonochemical methods. The as-synthesized samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopy (SEM and TEM) and UV–visible spectroscopy to investigate crystalline structure, morphology, composition and photocatalytic properties. XRD patterns and TEM images of the samples revealed pure phase orthorhombic Bi2MoO6 nanoplates without any detection of Ag dopant due to its low concentration and very tiny particle size. TEM images showed that Ag nanoparticles with the size of 10–15 nm were dispersed randomly on the surface of Bi2MoO6. The XPS analysis of Ag/Bi2MoO6 nanocomposites revealed the presence of additional metallic Ag. Photocatalytic activities of the Ag/Bi2MoO6 nanocomposites were evaluated by determining the degradation of rhodamine B (RhB) under visible light radiation. In this research, the 10 wt% Ag/Bi2MoO6 nanocomposites showed the best photocatalytic activity. The results suggest that the dispersion of Ag nanoparticles on the surface of Bi2MoO6 significantly enhances its photocatalytic activity.  相似文献   
5.
6.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized to prepare thermoplastic polyurethane (PU) composites with enhanced properties. In order to achieve a high compatibility of functionalized MWCNTs with the PU matrix, polycaprolactone diol (PCL), as one of PU’s monomers, was selectively grafted on the surface of MWCNTs (MWCNT–PCL), while carboxylic acid groups functionalized MWCNTs (MWCNT–COOH) and raw MWCNTs served as control. Both MWCNT–COOH and MWCNT–PCL improved the dispersion of MWCNTs in the PU matrix and interfacial bonding between them at 1 wt% loading fraction. The MWCNT–PCL/PU composite showed the greatest extent of improvement, where the tensile strength and modulus were 51.2% and 33.5% higher than those of pure PU respectively, without sacrificing the elongation at break. The considerable improvement in both mechanical properties and thermal stability of MWCNT–PCL/PU composite should result from the homogeneous dispersion of MWCNT–PCL in the PU matrix and strong interfacial bonding between them.  相似文献   
7.
Lattice structure and rod-like shaped SbSI nanocrystals obtained by ball milling with rod thickness down to 70 nm, as estimated from X-ray diffraction (XRD) and electron microscopy, is similar to that of the bulk crystals. The dependence of the grain size on the milling duration is discussed in view of the chain-like crystalline structure of SbSI. Possible factors, responsible for the observed Raman line broadening, are discussed, scattering by surface phonons being considered the predominant one.  相似文献   
8.
Three different configurations of Au‐nanoparticle/CdS‐nanoparticle arrays are organized on Au/quartz electrodes for enhanced photocurrent generation. In one configuration, Au‐nanoparticles are covalently linked to the electrode and the CdS‐nanoparticles are covalently linked to the bare Au‐nanoparticle assembly. The resulting photocurrent, φ = 7.5 %, is ca. 9‐fold higher than the photocurrent originating from a CdS‐nanoparticle layer that lacks the Au‐nanoparticles, φ = 0.8 %. The enhanced photocurrent in the Au/CdS nanoparticle array is attributed to effective charge separation of the electron–hole pair by the injection of conduction‐band electrons from the CdS‐ to the Au‐nanoparticles. Two other configurations involving electrostatically stabilized bipyridinium‐crosslinked Au/CdS or CdS/Au nanoparticle arrays were assembled on the Au/quartz crystal. The photocurrent quantum yields in the two systems are φ = 10 % and φ = 5 %, respectively. The photocurrents in control systems that include electrostatically bridged Au/CdS or CdS/Au nanoparticles by oligocationic units that lack electron‐acceptor units are substantially lower than the values observed in the analogous bipyridinium‐bridged systems. The enhanced photocurrents in the bipyridinium‐crosslinked systems is attributed to the stepwise electron transfer of conduction‐band electrons to the Au‐nanoparticles by the bipyridinium relay bridge, a process that stabilizes the electron–hole pair against recombination and leads to effective charge separation.  相似文献   
9.
Chemical Composition and Microstructure of Polymer‐Derived Glasses and Ceramics in the Si–C–O System. Part 2: Characterization of microstructure formation by means of high‐resolution transmission electron microscopy and selected area diffraction Liquid or solid silicone resins represent the economically most interesting class of organic precursors for the pyrolytic production of glass and ceramics materials on silicon basis. As dense, dimensionally stable components can be cost‐effectively achieved by admixing reactive filler powders, chemical composition and microstructure development of the polymer‐derived residues must be exactly known during thermal decomposition. Thus, in the present work, glasses and ceramics produced by pyrolysis of the model precursor polymethylsiloxane at temperatures from 525 to 1550 °C are investigated. In part 1, by means of analytical electron microscopy, the bonding state of silicon was determined on a nanometre scale and the phase separation of the metastable Si–C–O matrix into SiO2, C and SiC was proved. The in‐situ crystallization could be considerably accelerated by adding fine‐grained powder of inert fillers, such as Al2O3 or SiC, which permits effective process control. In part 2, the microstructure is characterized by high‐resolution transmission electron microscopy and selected area diffraction. Turbostratic carbon and cubic β‐SiC precipitate as crystallization products. Theses phases are embedded in an amorphous matrix. Inert fillers reduce the crystallization temperature by several hundred °C. In this case, the polymer‐derived Si–C–O material acts as a binding agent between the powder particles. Reaction layer formation does not occur. On the investigated pyrolysis conditions, no crystallization of SiO2 was observed.  相似文献   
10.
提出一种求解正常声光相互作用拉曼 内斯 (Raman Nath)方程的矩阵级数解法 ,该解法直观方便且具有普遍性。计算结果表明 ,对Q =4 1π ,Bragg衍射的效率只有 97 5 % ;对非对称入射 ,以往的Raman Nath近似解误差较大 ;指出提高Bragg衍射效率的有效途径在于提高声光频率比并给出计算声光器件最优长度的计算公式。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号