首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   559篇
  免费   4篇
  国内免费   15篇
电工技术   1篇
综合类   32篇
化学工业   450篇
金属工艺   3篇
机械仪表   5篇
矿业工程   11篇
能源动力   27篇
轻工业   6篇
石油天然气   4篇
一般工业技术   32篇
冶金工业   7篇
  2023年   10篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   7篇
  2018年   9篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   12篇
  2013年   36篇
  2012年   3篇
  2011年   56篇
  2010年   18篇
  2009年   46篇
  2008年   61篇
  2007年   37篇
  2006年   44篇
  2005年   43篇
  2004年   21篇
  2003年   20篇
  2002年   21篇
  2001年   6篇
  2000年   3篇
  1999年   9篇
  1998年   11篇
  1997年   4篇
  1996年   14篇
  1995年   7篇
  1994年   6篇
  1993年   3篇
  1992年   9篇
  1991年   3篇
  1990年   3篇
  1989年   10篇
  1988年   4篇
  1987年   8篇
  1986年   3篇
  1985年   1篇
  1981年   1篇
排序方式: 共有578条查询结果,搜索用时 15 毫秒
1.
The effect of electric field on the hydrodynamics of nanoparticles was studied in a fluidized rectangular bed, with electrodes attached to two parallel walls. It was shown that the electric field of the order of 3 times the gravity markedly decreased the bed expansion and increased the solids volume fraction of nanoparticles fluidized by air. In these experiments, a light diode assembly was utilized to infer the local solids volume fractions within a rectangular bed of 10 nm silica particles. These experimental measurements yielded a two dimensional solids volume fraction distribution within the rectangular bed. The experimental results provided some new insights into the distribution of solids within the bed. The agglomerate diameters were computed using a momentum balance with the drag given by the Ergun equation and the empirical Richardson-Zaki method. Both methods yielded agglomerate diameters of the order of 100 μm and showed dependence on the strength of the electric field. The electric field decreased the granular temperature of the nanoparticles.  相似文献   
2.
《Drying Technology》2008,26(3):308-314
A study has been conducted on the performance of a draft tube conical spouted bed for drying fine particles. Batch operation has been performed with nonporous, porous, and open-sided draft tubes in order to ascertain the optimum configuration of this internal device. The nonporous draft tube requires the lowest minimum spouting velocity. Nevertheless, the solid circulation rate and the drying efficiency of the open-sided draft tube are superior to any other spouted bed configuration. Moreover, it allows for reducing the height of the fountain and, consequently, the height of the drying equipment.  相似文献   
3.
The hydrodynamics of a two-dimensional gas–solid fluidized bed reactor were studied experimentally and computationally. Computational fluid dynamics (CFD) simulation results from a commercial CFD software package, Fluent, were compared to those obtained by experiments conducted in a fluidized bed containing spherical glass beads of 250– in diameter. A multifluid Eulerian model incorporating the kinetic theory for solid particles was applied in order to simulate the gas–solid flow. Momentum exchange coefficients were calculated using the Syamlal–O’Brien, Gidaspow, and Wen–Yu drag functions. The solid-phase kinetic energy fluctuation was characterized by varying the restitution coefficient values from 0.9 to 0.99. The modeling predictions compared reasonably well with experimental bed expansion ratio measurements and qualitative gas–solid flow patterns. Pressure drops predicted by the simulations were in relatively close agreement with experimental measurements at superficial gas velocities higher than the minimum fluidization velocity, Umf. Furthermore, the predicted instantaneous and time-average local voidage profiles showed similarities with the experimental results. Further experimental and modeling efforts are required in a comparable time and space resolutions for the validation of CFD models for fluidized bed reactors.  相似文献   
4.
Bench-scale methods were utilized to determine changes in electrostatic charges and their mechanisms for various coarse and fine particles as they came into contact with each other and/or their containing vessel walls. Techniques included shaking tests and particle-copper plate contacting experiments. Electrostatic behaviour of coarse particles (glass beads and polyethylene) and fine particles (Larostat 519, glass beads and silver-coated glass beads) were investigated. Shaking tests resulted in charge separation in which the fine particles acquired significant positive charges, opposite to those carried by the large particles. In copper-plate contacting tests, charge transfer occurred between the fines and the copper plate with fines carrying away almost all of the initial charges on the plate followed by further charge separation. Charge separation was found to be the dominant charging mechanism between the coarse particle and copper plate, with the particles becoming negatively charged.  相似文献   
5.
Discrete-particle simulations of a gas-solid fluidized bed are used to investigate the species segregation (de-mixing) behavior of systems with continuous particle size distributions. Both Gaussian and lognormal distributions are investigated over a range of distribution widths, restitution and friction coefficients, and gas velocities. The results indicate that: (i) the average particle diameter decreases as the height within the bed increases, (ii) the level of segregation increases with an increase in the width of the particle size distribution, and (iii) segregation is attenuated as bubbling becomes more vigorous. Furthermore, the shape of the local size distribution (i.e., Gaussian or lognormal) is found to mimic that of the overall size distribution in most regions of the fluidized bed.  相似文献   
6.
Studies on voidage fluctuations, axial voidage profile and bed expansion are carried out by measuring the local void fraction using particles of wide ranging characteristics in liquid-solid inverse fluidized bed. The quality of fluidization is elucidated by the local voidage fluctuations. The RMS voidage fluctuation depicts a maximum with respect to average bed void fraction and increases with increase in Archimedes number. The fluidization quality has been quantified using average normalized RMS voidage fluctuation in terms of Transition number. The axial void fraction is almost uniform throughout the bed except for particles with size distribution. All the literature and present experimental data on bed expansion are unified in terms of Richardson and Zaki equation using experimental terminal velocities. A new correlation is proposed for predicting the wall effect corrected experimental terminal velocities, as a substitute for standard drag equation. The bed expansion data are also predicted using the drift flux model.  相似文献   
7.
A comprehensive investigation was carried out to study hydrodynamics aspects of secondary air injection in circulating fluidized beds. This article presents modeling and results of computational fluid dynamics simulations of gas-solid flow in the riser section of a laboratory-scale (ID = 0.23 m, height = 7.6 m) circulating fluidized bed with a radial secondary air injector. The gas-solid flow model is based on the two-fluid (Eulerian-Eulerian) approach, where both gas and solids phases are treated as interpenetrating continua. A granular kinetic theory model is used to describe the solids phase stresses. The simulation results are compared with measured pressure drop and axial particle velocity profiles; reasonable agreement is obtained. Qualitatively, excellent agreement is obtained in predicting the increase in solids volume fraction below secondary air ports, the accumulation of solids around the center of the riser due to momentum of secondary air jets, and the absence of the solids down-flow near the wall above the secondary air injection ports, which are the prominent features of secondary air injection observed in the experiments.  相似文献   
8.
In this paper the concept of micro-fluidized beds is introduced. A cylindrical quartz reactor with an internal diameter of only 1 mm is used for process conditions up to and 244 bar. In this way, fast, safe, and inherently cheap experimentation is provided. The process that prompted the present work on miniaturization is gasification of biomass and waste streams in hot compressed water (SCWG). Therefore, water is used as fluidizing agent. Properties of the micro-fluid bed such as the minimum fluidization velocity (Umf), the minimum bubbling velocity (Umb), bed expansion, and identification of the fluidization regime are investigated by visual inspection. It is shown that the micro-fluid bed requires a minimum of twelve particles per reactor diameter in order to mimic homogeneous fluidization at large scale. It is not possible to create bubbling fluidization in the cylindrical micro-fluid beds used. Instead, slugging fluidization is observed for aggregative conditions. Conical shaped micro-reactors are proposed for improved simulation of the bubbling regime. Measured values of Umf and Umb are compared with predictions of dedicated 2D and 3D discrete particle models (DPM) and (semi)-empirical relations. The agreement between the measurements and the model predictions is good and the model supports the concept and development of micro-fluid beds.  相似文献   
9.
A new device for coating a single levitated particle in a controllable environment is designed and tested. This enables fluidized bed processing to be simulated experimentally on a single-particle level. The device consists of a coating chamber, which contains a capillary tube for levitating the particle, a micro-dispenser for producing discrete drops of controlled size and velocity and a device for supplying gas with specified temperature and humidity. The coating chamber consists of two parts, a confined space where the particle is levitated and a droplet insertion cone where the coating solution is injected into the particle suspending gas flow. A capillary with a well-defined diameter connects the droplet insertion cone and the area where the particle is levitated. The device is equipped with a piezo-actuated flow-through micro-dispenser that has the ability to produce discrete droplets with high reproducibility in terms of droplet size and velocity. The gas required for the coating process is taken from a gas container where the water content is analysed and kept at a minimum. A liquid flow is then introduced into the gas flow at a well-defined flow rate, mixed and evaporated in a three-way mixing vault. The humidified gas flow is then split into two separate flows; a suspending gas flow and a protecting gas flow for the inside of the coating chamber. The device is equipped with a high-speed video camera for monitoring both droplet production and droplet impact. Temperatures and flow rates throughout the device are measured and logged. Preliminary results show the influence of solvent, gas quality and coating procedure on the quality of the coating.  相似文献   
10.
《Chemical engineering science》2003,58(12):2515-2518
The paper presents an attempt to define the physical entropy of the dense phase of a fluidized bed, based on liquid-like properties of fluidized systems. The quantity U was used as the analogy of temperature in classical thermodynamics. The obtained expression for physical entropy was compared to the correlation suggested for the Kolmogorov entropy in bubbling bed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号