首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   8篇
  国内免费   8篇
综合类   6篇
化学工业   95篇
金属工艺   35篇
机械仪表   34篇
建筑科学   2篇
矿业工程   1篇
能源动力   4篇
轻工业   2篇
武器工业   1篇
无线电   17篇
一般工业技术   51篇
冶金工业   5篇
原子能技术   2篇
自动化技术   26篇
  2023年   10篇
  2022年   17篇
  2021年   14篇
  2020年   13篇
  2019年   8篇
  2018年   9篇
  2017年   8篇
  2016年   20篇
  2015年   8篇
  2014年   16篇
  2013年   19篇
  2012年   6篇
  2011年   11篇
  2010年   7篇
  2009年   9篇
  2008年   10篇
  2007年   10篇
  2006年   15篇
  2005年   7篇
  2004年   7篇
  2003年   9篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1999年   6篇
  1998年   10篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   5篇
  1989年   3篇
排序方式: 共有281条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(7):9330-9341
This study investigates the effects of densification on the deformation and fracture in fused silica under Vickers indentation by both the finite element analysis (FEA) and experimental tests. A refined elliptical constitutive model was used, which enables us to investigate the effects of the evolution of yield stress under pure shear and elastic properties with densification. The densification distribution was predicted and compared with experiments. The plastic deformation and indentation stress fields were used to analyze the initiation and morphology of various crack types. The formation mechanism of borderline cracks was revealed for the first time. This study reveals that the asymmetry of the densification distribution and elastic-plastic boundary significantly influences the cracking behavior. Under the Vickers indentation, conical cracks have the largest penetration depth. When these cracks emerge from a region far from the impression, they extend with constant radii to form circles on the sample surface. Otherwise, they tend to be initiated at the centers of the indenter-material contact edges before propagating towards the impression corners with increasing radii. Therefore, the borderline cracks consisting of successive partial conical cracks can form at a low load and makes them the first type of crack to appear.  相似文献   
2.
Three novel organic dyes adopting fully-fused coplanar heteroarene as the donor moieties end-capped with two cyanoacrylic acids as acceptors and anchoring groups have been synthesized, characterized, and used as the sensitizers for dye-sensitized solar cells (DSSCs). The photophysical and electrochemical properties of the novel dyes and the characteristics of the DSSCs based on the novel organic dyes were investigated. The incorporation of the coplanar cores with electron-donating N-bridges are beneficial for the better intramolecular charge transfer (ICT), giving these new dyes good light-harvesting capability. The LUMO energy levels of these coplanar heteroacene-based dyes are sufficiently high for the efficient electron injection to TiO2 upon photo-excitation, while the suitable HOMOs allow the regeneration of oxidized dyes with the electrolyte redox (I/I3). The structural features of the coplanar cores (penta vs. hexa heteroarene) as well as the alkyl substitutions play crucial roles in governing the physical properties and device performance. Among these three novel organic sensitizers, the EHTt dye composed of a fully fused hexa-arene core and less bulky N-alkyl groups caused the DSSC to show the best photovoltaic performance with an open-circuit voltage (VOC) of 0.58 V, a short-circuit photocurrent density (JSC) of 13.72 mA/cm2, and a fill factor (FF) of 0.69, yielding an overall power conversion efficiency (PCE) of 5.52% under AM 1.5G solar irradiation.  相似文献   
3.
This paper presents the concept of a process signature for the use of online signature analysis and defect detection in the layered manufacturing (LM) of ceramic sensors and actuators. To achieve the high quality of parts built by the fused deposition of ceramics (FDC), an online process-monitoring system is implemented to detect the processing defects. Using a process signature extracted from the image of a layer captured by the monitoring system, an ideal image is created that is then compared to the original image to detect and identify the defects. Some results of signature analysis and defect detection for single-material and multi-material parts are also presented.Received: 22 July 1999, Accepted: 21 October 2001, Published online: 29 October 2003 Correspondence to: Mohsen A. JafariThis work was supported by the Office of Naval Research under grant # N-0014-96-1-1175. Ref. US Patent # S-5738817, April 14, 1998.  相似文献   
4.
An optimized recipe for 3D printing of Mullite-based structures was used to investigate the effect of MgO sintering additive on the processing stages and final ceramic properties. To achieve dense 3:2 mullite, ceramic filaments were prepared based on an alumina powder, a methyl silicone resin, EVA elastomeric binder and MgO powder. Using 1 wt% MgO and a dwell time of 5 h at 1600 °C, a dense mullite structure could be obtained from filaments with a diameter of 1.75 mm. Ceramic structures with and without sintering additive were printed in vertical and horizontal direction, to investigate the effect of printing direction on mechanical strength after sintering. Using four-point bending test, it was demonstrated that by using MgO, the printing orientation did not affect the mechanical strength significantly anymore. The low Weibull modulus could be explained by the closed porosity that emerge during the degassing of the preceramic polymer due to cross-linking.  相似文献   
5.
This study focuses on formulation of robust design for vapour smoothing, an advanced surface finishing technique for finishing ABS replicas where hot vapours tend to level the uneven surface asperities. The process parameters of combined Fused Deposition Modeling (FDM) and Vapour smoothing (VS) process are optimized for sustainability of ABS replicas for biomedical applications. Six input parameters have been investigated, two of FDM and four of VS processes while surface roughness and hardness of ABS part is taken as response. The vapour smoothing process ensue ultra smooth finish with negligible deterioration of upper surface deducing maximum contribution of smoothing time (51.07%) and number of cycles (40.08%) on surface roughness. Hardness of replica has been slightly increased by maximum impact of orientation angle (34.69%) and postcooling time (44.46%) of ABS replicas which endorsed the use of FDM replicas for investment casting of biomedical implants.  相似文献   
6.
《Ceramics International》2017,43(15):11596-11609
A critical function for crack propagation for the single grit scratching of fused silica is developed based on the fracture mechanics. The effects of original crack density on the surface, strain rate and grinding coolant are considered in the function. A theoretical model for controlled material removal mode and depth of micro cracks precision grinding is presented based on the critical function for crack propagation. It can be predicted by the model that the material removal mode in the grinding of fused silica with original cracks damage will change from a ductile mode to a semi-brittle mode, a full-brittle mode and a semi-brittle mode in sequence with the increasing single grit scratching depth. It was found that the micro crack damage depth of fused silica does not increase with the single grit scratching depth after a full brittle mode grinding and it is always smaller than that after a semi brittle mode grinding even with a smaller single grit scratching depth. These interesting results are explained by the fracture mechanics. The ductile mode grinding is a recognized desirable process of fabricating fused silica while the full-brittle grinding is also a feasible process for its shallow subsurface damage, high efficiency, low grinding force and energy consumption. Therefore, the depth of micro cracks after grinding can be controlled by choosing suitable grinding parameters. Grinding experiments are conducted on fused silica. The undeformed chip thickness of randomly distributed effective grits is simulated based on 3D reconstruction of wheel topography to reveal the relationship between the grinding parameters and the single grit scratching depth. Ground surface roughness, sub-surface damage (SSD) depth and grinding force are measured and discussed. It is shown that the model predictions correlate well with the experimental trend of grinding modes.  相似文献   
7.
This paper proposes a fused lasso model to identify significant features in the spectroscopic signals obtained from a semiconductor manufacturing process, and to construct a reliable virtual metrology (VM) model. Analysis of spectroscopic signals involves combinations of multiple samples collected over time, each with a vast number of highly correlated features. This leads to enormous amounts of data, which is a challenge even for modern-day computers to handle. To simplify such complex spectroscopic signals, dimension reduction is critical. The fused lasso is a regularized regression method that performs automatic variable selection for the predictive modeling of highly correlated datasets such as those of spectroscopic signals. Furthermore, the fused lasso is especially useful for analyzing high-dimensional data in which the features exhibit a natural order, as is the case in spectroscopic signals. In this paper, we conducted an experimental study to demonstrate the usefulness of a fused lasso-based VM model and compared it with other VM models based on the lasso and elastic-net models. The results showed that the VM model constructed with features selected by the fused lasso algorithm yields more accurate and robust predictions than the lasso- and elastic net-based VM models. To the best of our knowledge, ours is the first attempt to apply a fused lasso to VM modeling.  相似文献   
8.
We present here an original route for the manufacturing of SiC ceramics based on 3D printing, polymer impregnation and pyrolysis and chemical vapor deposition (CVD). The green porous elastomer structures were first prepared by fused deposition modeling (FDM) 3D-printing with a composite polyvinyl alcohol/elastomer wire and soaking in water, then impregnated with an allylhydridopolycarbosilane preceramic polymer. After crosslinking and pyrolysis, the polymer-derived ceramics were reinforced by CVD of SiC using CH3SiCl3/H2 as precursor. The multiscale structure of the SiC porous specimens was examined by X-ray tomography and scanning electron microscopy analyses. Their oxidation resistance was also studied. The pure and dense CVD-SiC coating considerably improves the oxidation resistance.  相似文献   
9.
In order to mimic and enhance the properties of moth eye-like materials, nanopatterned fused silica was chemically modified to produce self-cleaning substrates that have anti-reflective and infrared transmissive properties. The characteristics of these substrates were evaluated before and after chemical modification. Furthermore, their properties were compared to fused silica that was devoid of surface features. The chemical modification imparted superhydrophobic character to the substrates, as demonstrated by the average water contact angles which exceeded 170°. Finally, optical analysis of the substrates revealed that the infrared transmission capabilities of the fused silica substrates (nanopatterned to have moth eye on one side) were superior to those of the regular fused silica substrates within the visible and near-infrared region of the light spectrum, with transmission values of 95% versus 92%, respectively. The superior transmission properties of the fused silica moth eye were virtually unchanged following chemical modification.  相似文献   
10.
Fused filament fabrication (FFF), as one of the additive manufacturing technology, provides cost-effective and relatively fast preparation of 3D objects of desired dimensions and design. In this work, a composite filament containing 50 vol. % of sub-micron alumina powder was successfully used for the manufacturing of samples with prismatic design. The influence of the layer thickness (0.1–0.3 mm) on the final bulk density and mechanical properties were investigated. Sintering at 1600 °C for 1 h results in relative densities ranging from 80 to 89 % and the flexural strength reached 200–300 MPa depending on the layer thickness used for the printing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号