首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   5篇
综合类   1篇
化学工业   124篇
金属工艺   1篇
机械仪表   1篇
建筑科学   4篇
矿业工程   12篇
能源动力   5篇
水利工程   2篇
石油天然气   1篇
一般工业技术   62篇
原子能技术   1篇
  2023年   12篇
  2022年   22篇
  2021年   16篇
  2020年   5篇
  2019年   1篇
  2018年   14篇
  2017年   37篇
  2016年   25篇
  2015年   7篇
  2014年   16篇
  2013年   7篇
  2012年   5篇
  2011年   11篇
  2010年   7篇
  2009年   4篇
  2008年   7篇
  2007年   8篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
排序方式: 共有214条查询结果,搜索用时 15 毫秒
1.
The current trends in energy were described, the main of which is the use of alternative energy sources, especially hydrogen. The most common methods of hydrogen accumulation were proposed: accumulation of compressed gaseous hydrogen in high-pressure tanks; accumulation of liquid hydrogen in cryogenic tanks; storing hydrogen in a chemically bound state; accumulation of gaseous hydrogen in carriers with a high specific surface area. Based on the combination of advantages and disadvantages, the most promising methods of accumulation were selected: storage of liquid hydrogen and storage of hydrogen in carriers with a high specific surface area. The main requirement for materials for hydrogen storage by these methods was revealed – a high specific surface area. Prospects for the development of waste-free low-emission technologies due to the recycling of secondary raw materials and the development of low-temperature technologies for the synthesis of functional and structural materials were substantiated. The applicability of large-scale ash and slag waste from coal-fired thermal power plants as a raw material for obtaining materials by low-temperature technologies was shown. The traditional ways of using ash and slag waste as a raw material, active additive and filler in the production of cements were described. Modern technologies for the production of innovative materials with a unique set of properties were presented, namely carbon nanotubes, silica aerogel and geopolymer materials. The prospect of using geopolymer matrices as a precursor for the synthesis of a number of materials was described; the most promising type of materials was selected – geopolymer foams, which are mainly used as sorbents for purifying liquids and gases or accumulating target products, as well as heat-insulating materials. The possibility of obtaining products of any shape and size on the basis of geopolymer matrices without high-temperature processing was shown. The special efficiency of the development of the technology of porous granules and powders obtained from a geopolymer precursor using various methods was substantiated. The obtained granules can be used in the following hydrogen storage technologies: direct accumulation of hydrogen in porous granules; creation of insulating layers for liquid hydrogen storage units.  相似文献   
2.
The growth of demand for concrete raises concerns about the consumption of natural resources and ordinary Portland cement. Geopolymer composites show promise as a sustainable alternative for conventional cement concrete. Considering the wide range of potential geopolymer composites applications (including suitability for transportation infrastructure, underwater applications, repair and rehabilitation of structures as well as recent developments in 3D printing), the desired fresh and mechanical properties of the geopolymer composite may vary between applications: for example, rapid setting can be a merit for certain applications and a demerit for others. Therefore, the desired fresh and mechanical properties (e.g., workability, setting time, compressive strength, etc.) can be controlled for a given geopolymer source material through its partial substitution by natural or by-product materials. Recognizing the critical role of various replacement materials in enhancing the potential applications of geopolymer composites, the present review was undertaken to quantify and understand the effect of partial replacement by fly ash, metakaolin, kaolin, red mud, slag, ordinary Portland cement, and silica fume on the setting time, workability, compressive strength and flexural strength of various source materials addressed in the literature. The review also provides insights into research gaps in the field to promote future research.  相似文献   
3.
《Ceramics International》2021,47(21):29949-29959
High carbon footprint of cement production is the major drawback of plain cement concrete resulting in environmental pollution. Geopolymer composites paste can be effectively used as an alternative to Portland cement in the construction industry for a sustainable environment. The demand for high-performance composites and sustainable construction is increasing day by day. Therefore, the present experimental program has endeavored to investigate the mechanical performance of basalt fiber-reinforced fly ash-based geopolymer pastes with various contents of nano CaCO3. The content of basalt fibers was fixed at 2% by weight for all specimens while the studied contents of nano CaCO3 were 0%, 1%, 2%, and 3%, respectively. The compressive strength, compressive stress-strain response, flexural strength, bending stress-strain response, elastic modulus, toughness modulus, toughness indices, fracture toughness, impact strength, hardness, and microstructural analysis of all four geopolymer composite pastes with varying contents of nano CaCO3 using scanning electron microscopy (SEM) were evaluated. The results revealed that the use of 3% nano CaCO3 in basalt fiber-reinforced geopolymer paste presented the highest values of compressive strength and hardness while the use of 2% nano CaCO3 showed the highest values of flexural strength, impact strength, and fracture toughness of composite paste. The SEM results indicated that the addition of nano CaCO3 improved the microstructure and provided a denser geopolymer paste by refining the interfacial zones and accelerating the geopolymerization reaction.  相似文献   
4.
《Ceramics International》2022,48(18):26233-26247
A new type of 3D-printable ‘one-part’ geopolymer was synthesized with fly ash (FA), granulated blast furnace slag (GBFS), steel slag (SS) and flue gas desulfurization gypsum (FGD). The effects of SS content (0–40%) on the rheological properties, 3D-printability, mechanical anisotropy and reaction kinetics of geopolymer were investigated. The yield stress and plastic viscosity monotonically decreased with the increasing SS content. Contrarily, the geopolymer with 10% of SS presented better extrudability, buildability and mechanical strength than those with 0, 20%, 30% and 40% of SS. This was mainly attributed to the conflicting influence of SS on geopolymerization, of which the OH? produced by hydration of SS raised the alkalinity of the reaction system and accelerated the dissolution of SiO44? and AlO45?, while the low reactivity prohibited the following polymerization process. Furthermore, the 3D-printed geopolymer presented more compact microstructure and less mechanical anisotropy thanks to the crosslinking of morphologically complementary products, including N(C)-A-S-H, C–S–H, AFt and CH, formed via synergistic reaction of FA-GBFS-SS-FGD system.  相似文献   
5.
This work investigates emulsion templating to synthesize hexadecane oil/geopolymer composites. In a system with hexadecane as the internal (dispersed) phase and an alkali activated continuous phase without added surfactant, adding aluminosilicate clay particles does not increase resistance against creaming or coalescence, while adding a surfactant (L35 or CTAB) stabilizes the solid-liquid interface. Infrared studies and rheological studies of the associated geopolymerization determined that the presence of the organic phase or surfactant has no significant effect on the geopolymerization kinetics, as determined by the change in time of the Si-O-T IR stretching frequency and the rheological moduli involved during the process. The stabilization of the organic template is reminiscent of Pickering emulsion even though we employ a much greater amount of inorganic material for geopolymer formation. Although the addition of surfactant has a significant effect on the behavior of the paste, the percolation of the network remains unmodified, highlighting the fact that the phenomenon is not dependent on viscosity. Finally, rheological measurements were used to obtain the mass fractal dimension of the as-made gel network, which is able to differentiate the interfacial effect between surfactant molecules with a slightly denser interphase when a cationic surfactant is used.  相似文献   
6.
The limited research on the geopolymer concrete mix design for targeting a specific strength is identified an obstacle for their effective design and wide use. In this paper, a mix design procedure has been proposed for fly-ash based geopolymer concrete and its use as infill hybrid composite beam is investigated. Then, the structural performance of geopolymer concrete filled hybrid composite beam is investigated to determine their possible application in civil infrastructure. Firstly, a detailed procedure of mix design for fly-ash based geopolymer concrete is presented. Secondly, three hybrid beams filled with geopolymer concrete were prepared and tested in a four-point bending setup to evaluate their flexural modulus and modulus of rupture. Numerical and analytical evaluation of the behaviour of hybrid beam were performed and results showed a good agreement with the experimental investigation. Thirdly, the suitability of the beam for a composite railway sleeper is evaluated and compared with existing timber and composite sleepers. Finally, the beams’ performance in a ballast railway track is analysed using Strand7 finite element simulation software and the results showed that the new concept of using geopolymer concrete as infill to pultruded composite section satisfied the stiffness and strength requirements for a railway sleeper.  相似文献   
7.
以偏高岭土和改性水玻璃为原料,采用分散悬浮固化法制备偏高岭土基地质聚合物微球(GM)。使用扫描电子显微镜、比表面积及孔径分布测试仪、傅里叶变换红外光谱仪和X射线粉末衍射仪对其进行结构表征,并研究了GM对亚甲基蓝的吸附性能。结果表明:GM对亚甲基蓝的吸附基本符合准二级动力学模型和Langmuir吸附等温线模型,333 K时最大理论吸附量为100.1 mg/g。GM对亚甲基蓝的吸附是自发吸热过程。使用后的GM在5次循环利用后,GM对MB的去除率仍然可达81.56%,易于回收和再生。分析了GM对不同阴阳离子型染料的吸附效果,结果表明,GM对阳离子型染料具有选择性吸附。GM是一种低价、有效、绿色、可循环利用的吸附剂,可用于去除水中阳离子型染料污染物。  相似文献   
8.
The potential position of and drivers for inorganic polymers (“geopolymers”) as an element of the push for a sustainable concrete industry are discussed. These materials are alkali-activated aluminosilicates, with a much smaller CO2 footprint than traditional Portland cements, and display very good strength and chemical resistance properties as well as a variety of other potentially valuable characteristics. It is widely known that the widespread uptake of geopolymer technology is hindered by a number of factors, in particular issues to do with a lack of long-term (20+ years) durability data in this relatively young research field. There are also difficulties in compliance with some regulatory standards in Europe and North America, specifically those defining minimum clinker content levels or chemical compositions in cements. Work on resolving these issues is ongoing, with accelerated durability testing showing highly promising results with regard to salt scaling and freeze–thaw cycling. Geopolymer concrete compliance with performance-based standards is comparable to that of most other high-strength concretes. Issues to do with the distinction between geopolymers synthesised for cement replacement applications and those tailored for niche ceramic applications are also discussed. Particular attention is paid to the role of free alkali and silicate in poorly-formulated systems and its deleterious effects on concrete performance, which necessitates a more complete understanding of the chemistry of geopolymerisation for the technology to be successfully applied. The relationship between CO2 footprint and composition in comparison with Portland-based cements is quantified.  相似文献   
9.
Efflorescence control in geopolymer binders based on natural pozzolan   总被引:1,自引:0,他引:1  
This paper addresses methods to reduce efflorescence in a geopolymer binder based on a pumice-type natural pozzolanic material from Taftan, Iran. Geopolymer pastes samples are analyzed for compressive strength and efflorescence formation after curing at 95% humidity for 28 days. To reduce the extent of efflorescence, Al-rich mineral admixtures such as metakaolin, ground granulated blast-furnace slag, and three types of calcium aluminate cements are incorporated into the dry binder at a range of concentrations. Hydrothermal curing at elevated temperatures also shows a positive effect in efflorescence reduction. Calcium aluminate cements show the greatest effect in efflorescence reduction, which is attributed to their dissolution in alkaline media releasing high amounts of alumina into the aluminosilicate geopolymer gel. These results confirm that it is possible to develop a more reliable geopolymer binder with improved properties either by adding a suitable amount of active alumina to precursors such as natural pozzolan, or by manipulating the curing conditions to enhance alumina release from less-reactive precursor phases.  相似文献   
10.
Metakaolin was incrementally replaced (33.3%, 50% and 66.6%) by red ceramic waste in geopolymer formulation to study the effect on geopolymerisation and its resultant properties. The geopolymer binders composed of two calcined aluminosilicates (viz. Metakaolin and Red ceramic waste), NaOH and sodium silicate. In the experimental compositions, metakaolin was replaced gradually up to 66.6% in the clay fraction, the Si/Al increased from 3.36 to 5.16 and Na/Al increased from 0.93 to 1.38. The FTIR spectroscopic studies of geopolymer pastes along with XRD analysis indicated that the red ceramic waste partly reacts with alkali and takes part in geopolymer formation. Replacement of 33.3% metakaolin by the red ceramic waste in geopolymer binder did not reduce the compressive strength with respect to the pure metakaolin geopolymer here. Additional replacement resulted in a drastic decrease in the compressive strength of the geopolymer binder. However, the compressive strength of geopolymer mortars revealed interesting synergy between the amount of binder and particle packing in the mortar. Despite having a lower amount of binder phase, mortars with 33% and 50% red ceramic waste exhibited maximum compressive strength values. This has been attributed to improved particle packing through incorporation of red ceramic waste particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号