首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47966篇
  免费   3760篇
  国内免费   2787篇
电工技术   2321篇
技术理论   9篇
综合类   2680篇
化学工业   8995篇
金属工艺   3203篇
机械仪表   2253篇
建筑科学   2983篇
矿业工程   1884篇
能源动力   2831篇
轻工业   2523篇
水利工程   1469篇
石油天然气   2409篇
武器工业   434篇
无线电   5516篇
一般工业技术   7066篇
冶金工业   1897篇
原子能技术   1593篇
自动化技术   4447篇
  2024年   160篇
  2023年   876篇
  2022年   1217篇
  2021年   1632篇
  2020年   1600篇
  2019年   1400篇
  2018年   1438篇
  2017年   1701篇
  2016年   1808篇
  2015年   1702篇
  2014年   2707篇
  2013年   3220篇
  2012年   2808篇
  2011年   3649篇
  2010年   2613篇
  2009年   2641篇
  2008年   2534篇
  2007年   2772篇
  2006年   2590篇
  2005年   2224篇
  2004年   1942篇
  2003年   1620篇
  2002年   1419篇
  2001年   1250篇
  2000年   1036篇
  1999年   986篇
  1998年   801篇
  1997年   769篇
  1996年   623篇
  1995年   537篇
  1994年   430篇
  1993年   310篇
  1992年   268篇
  1991年   218篇
  1990年   178篇
  1989年   208篇
  1988年   144篇
  1987年   80篇
  1986年   87篇
  1985年   65篇
  1984年   59篇
  1983年   44篇
  1982年   32篇
  1981年   33篇
  1980年   19篇
  1979年   12篇
  1976年   7篇
  1974年   5篇
  1973年   6篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The development of a high cooling power and high efficiency 4.2 K two stage G-M cryocooler is critically important given its broad applications in low temperature superconductors, MRI, infrared detector and cryogenic electronics. A high efficiency 1.5 W/4.2 K pneumatic-drive G-M cryocooler has recently been designed and developed by ARS. The effect of expansion volume rate and operation conditions on the cooling performance has been experimentally investigated. A typical cooling performance of 1.5 W/4.2 K has been achieved, and the minimum temperature of the second stage is 2.46 K. The steady input power of the compressor at 60 Hz is 6.8 kW, while the operation speed of the rotary valve is 30 rpm. A maximum cooling power of 1.75 W/4.2 K has been obtained in test runs.  相似文献   
2.
Strain rate is not only an important measure to characterize the deformation property, but also an important parameter to analyze the dynamic mechanical properties of rock materials. In this paper, by using the SHPB test system improved with high temperature device, the dynamic compressive tests of sandstone at seven temperatures in the range of room temperature to 1000 °C and five impact velocities in the range of 11.0–15.0 m/s were conducted. Investigations were carried out on the influences of strain rate on dynamic compressive mechanical behaviors of sandstone. The results of the study indicate that the enhancement effects of strain rates on dynamic compressive strength, peak strain, energy absorption ratio of sandstone under high temperatures still exist. However, the increase ratios of dynamic compressive strength, peak strain, and energy absorption ratio of rock under high temperature compared to room temperature have no obvious strain rate effects. The temperatures at which the strain rates affect dynamic compressive strength and peak strain most, are 800, and 1000 °C, respectively. The temperatures at which the strain rates affect dynamic compressive strength and peak strain weakest, are 1000 °C, and room temperature, respectively. At 200 and 800 °C, the strain rate effect on energy absorption ratio are most significant, while at 1000 °C, it is weakest. There are no obvious strain rate effects on elastic modulus and increase ratio of elastic modulus under high temperatures. According to test results, the relationship formula of strain rate with high temperature and impact load was derived by internalizing fitting parameters. Compared with the strain rate effect at room temperature condition, essential differences have occurred in the strain rate effect of rock material under the influence of high temperature.  相似文献   
3.
Numerical simulation, using SILVACO-TCAD, is carried out to explain experimentally observed effects of different types of deep levels on the capacitance–voltage characteristics of p-type Si-doped GaAs Schottky diodes grown on high index GaAs substrates. Two diodes were grown on (311)A and (211)A oriented GaAs substrates using Molecular Beam Epitaxy (MBE). Although, deep levels were observed in both structures, the measured capacitance–voltage characteristics show a negative differential capacitance (NDC) for the (311)A diodes, while the (211)A devices display a usual behaviour. The NDC is related to the nature and spatial distribution of the deep levels, which are characterized by the Deep Level Transient Spectroscopy (DLTS) technique. In the (311)A structure only majority deep levels (hole traps) were observed while both majority and minority deep levels were present in the (211)A diodes. The simulation, which calculates the capacitance–voltage characteristics in the absence and presence of different types of deep levels, agrees well with the experimentally observed behaviour.  相似文献   
4.
Spinel LiSr0·1Cr0·1Mn1·8O4 was synthesised by high temperature solid state method in order to enhance the electrochemical performance. The LiSr0·1Cr0·1Mn1·8O4 (LSCMO) materials were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical tests. The XRD and SEM studies confirm that LSCMO had spinel crystal structure with a space group of Fd3m, and the particle of LSCMO shows irregular shape. The cyclic voltammetry data illustrated that the heavy current charge–discharge performance of LMO was improved by Sr2+ and Cr3+ doping. The galvanostatic charge–discharge of LSCMO cathode materials was measured at 1, 5, 10 and 20 C. The results indicated that LSCMO improved the capacity retention.  相似文献   
5.
Organic devices like organic light emitting diodes (OLEDs) or organic solar cells degrade fast when exposed to ambient air. Hence, thin-films acting as permeation barriers are needed for their protection. Atomic layer deposition (ALD) is known to be one of the best technologies to reach barriers with a low defect density at gentle process conditions. As well, ALD is reported to be one of the thinnest barrier layers, with a critical thickness – defining a continuous barrier film – as low as 5–10 nm for ALD processed Al2O3. In this work, we investigate the barrier performance of Al2O3 films processed by ALD at 80 °C with trimethylaluminum and ozone as precursors. The coverage of defects in such films is investigated on a 5 nm thick Al2O3 film, i.e. below the critical thickness, on calcium using atomic force microscopy (AFM). We find for this sub-critical thickness regime that all spots giving raise to water ingress on the 20 × 20 μm2 scan range are positioned on nearly flat surface sites without the presence of particles or large substrate features. Hence below the critical thickness, ALD leaves open or at least weakly covered spots even on feature-free surface sites. The thickness dependent performance of these barrier films is investigated for thicknesses ranging from 15 to 100 nm, i.e. above the assumed critical film thickness of this system. To measure the barrier performance, electrical calcium corrosion tests are used in order to measure the water vapor transmission rate (WVTR), electrodeposition is used in order to decorate and count defects, and dark spot growth on OLEDs is used in order to confirm the results for real devices. For 15–25 nm barrier thickness, we observe an exponential decrease in defect density with barrier thickness which explains the likewise observed exponential decrease in WVTR and OLED degradation rate. Above 25 nm, a further increase in barrier thickness leads to a further exponential decrease in defect density, but an only sub-exponential decrease in WVTR and OLED degradation rate. In conclusion, the performance of the thin Al2O3 permeation barrier is dominated by its defect density. This defect density is reduced exponentially with increasing barrier thickness for alumina thicknesses of up to at least 25 nm.  相似文献   
6.
The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the applied magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. In addition, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.  相似文献   
7.
Light-emitting field effect transistors (LEFETs) are a class of organic optoelectronic device capable of simultaneously delivering the electrical switching characteristics of a transistor and the light emission of a diode. We report on the temperature dependence of the charge transport and emissive properties in a model organic heterostructure LEFET system from 300 K to 135 K. We study parameters such as carrier mobility, brightness, and external quantum efficiency (EQE), and observe clear thermally activated behaviour for transport and injection. Overall, the EQE increases with decreasing temperature and conversely the brightness decreases. These contrary effects can be explained by a higher recombination efficiency occurring at lower temperatures, and this insight delivers new knowledge concerning the optimisation of both the transport and emissive properties in LEFETs.  相似文献   
8.
分析了建立高可用性DHCP服务的迫切需求,根据DHCP服务体系结构,提出了DHCP服务的设计方法,并进行了周密的系统设计和系统部署,总结出了大型局域网部署DHCP服务的优化策略。  相似文献   
9.
魏庆宾 《人民长江》2015,46(10):77-82
大坝运行监测易受自然环境和监测条件影响,存在时间和空间上的变异性,监测数据具有不确定性。以云理论的随机性和不确定性分析方法为基础,并与空间数据辐射思想相结合,建立了云滴概率密度分布估计模型,然后导出云概率密度分布函数,依据样本监测数据推求母体空间数据的分布特征,并设计了基于逆向云算法云变换的计算程序。分析陆浑水库1979~1999年测压管监测数据和位移变形数据的云概率密度分布特征和云数字特征,得出了20 a来大坝的数据分布特征和运行状态。监测数据分析结果表明,云概率密度分布估计不仅能有效合理地分析大坝的运行状态,而且能够依据云数字特征来判断监测状态和监测环境的异常变化。   相似文献   
10.
The influence of network density on the strain hardening behaviour of amorphous polymers is studied. The network density of polystyrene is altered by blending with poly(2,6-dimethyl-1,4-phenylene-oxide) and by cross-linking during polymerisation. The network density is derived from the rubber-plateau modulus determined by dynamic mechanical thermal analysis. Subsequently uniaxial compression tests are performed to obtain the intrinsic deformation behaviour and, in particular, the strain hardening modulus. At room temperature, the strain hardening modulus proves to be proportional to the network density, irrespective of the nature of the network, i.e. physical entanglements or chemical cross-links. With increasing temperature, the strain hardening modulus is observed to decrease. This decrease appears to be related to the influence of thermal mobility of the chains, determined by the distance to the glass-transition temperature (TTg).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号