首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   0篇
  国内免费   1篇
化学工业   97篇
金属工艺   90篇
机械仪表   14篇
轻工业   17篇
石油天然气   1篇
一般工业技术   29篇
冶金工业   9篇
自动化技术   7篇
  2020年   1篇
  2013年   262篇
  2007年   1篇
排序方式: 共有264条查询结果,搜索用时 15 毫秒
1.
Abstract

The microstructure of a multiphase NiAl-33.5Cr-0.5Zr intermetallic alloy was examined by SEM with energy dispersive spectroscopy and TEM. The tensile creep behaviour of the hot isostatically pressed NiAl-33.5Cr-0.5Zr alloy was studied. The results of the creep test indicated that all of the creep curves under the present test have similar characteristics: a short primary creep stage, a dominant tertiary creep stage, and nearly identical creep strains (~45%). The apparent stress exponent and the apparent activation energy were analysed and discussed. The mechanism of the creep deformation was also analysed by the observation of TEM.  相似文献   
2.
《粉末冶金学》2013,56(4):345-349
Abstract

Fatigue crack propagation rates under plane strain conditions have been investigated for three PM low alloy steels consolidated to high densities by rotary compaction followed by sintering and heat treatment. It is shown that the densities and properties are intermediate between those of pressed and sintered materials and of powder forged materials. Threshold stress intensities compare satisfactorily with those for wrought counterparts, but resistances to crack growth are inferior to those of wrought steels. Possible reasons for the properties of the rotary compacted materials are considered in the light of their microstructures and the behaviour of other PM materials.  相似文献   
3.
The inertia friction welding process is a non-linear process because of the interaction between the temperature field and the material properties as well as the friction force. A thermo-mechanical coupled finite element model is established to simulate the temperature field of this process. The transient temperature distribution during the inertia friction welding process of two similar workpieces of GH4169 alloy is calculated. The region of the circular cross-section of the workpiece is divided into a number of four-nodded isoparametric elements. In this model, the temperature dependent thermal properties, time dependent heat inputs, contact condition of welding interface, and deformation of the flash were considered. At the same time, the convection and radiation heat losses at the surface of the workpieces were also considered. A temperature data acquisition system was developed. The temperature at some position near the welding interface was measured using this system. The calculated temperature agrees well with the experimental data. The deformation of the flash and the factor affecting the temperature distribution at the welding interface are also discussed.  相似文献   
4.
Abstract

In order to obtain a robust dissimilar joint of Al/Ti alloys, a filler wire of Al–12 wt-%Si and 45° V shape groove on the base metal were used during CO2 laser welding. Heat input had evident influence on the interfacial reaction mode. It was found that a dissolution mode for low heat input and a melting mode for high heat input exist at the joint interface, which was analysed from thermodynamic point of view. Tensile strength of the joints in the dissolution mode reached as high as 296 MPa, which was significantly higher than that in the melting mode.  相似文献   
5.
Abstract

This paper describes the microstructural evolution of friction taper plug welded joints of C–Mn steels. Experimental and numerical analyses included calculations based on Calphad and continuous cooling transformation curves, and characterisation techniques. The studied friction taper plug welded joint contains three macroregions: plug material, thermomechanically affected zone (TMAZ) and base material. The thermomechanical conditions imposed in the studied friction taper plug welded joint precluded the formation of a heat affected zone. However, seven subregions were identified within the TMAZ region and details are discussed. The interface zone is found in the TMAZ region, where the most relevant phase transformations take place. It is suggested that the phase transformations in TMAZ region depend on local conditions, such as chemical composition, deformation rate, thermal history and the previous thermomechanical history of the parent materials.  相似文献   
6.
Abstract

Friction stir spot welding (FSSW), which was recently developed as a spot joining technique, has been applied to a lap joint of Al alloy 6061 sheets, 1 mm in thickness, to clarify its microstructural features of the joint. A nugget shaped stir zone having finer grain size was observed around the exit hole of the probe. Crystallographic texture analyses using EBSD method suggested that the material flow occurred along the rotating direction of the FSSW tool in the wide region including the stir zone. In the periphery of the nugget shaped stir zone, which was characterised by finer grain size than the stir zone interior, no inclusions or precipitates were found on the SEM scale. A softened region was formed around the joint centre, which could be explained as resulting from dissolution and/or growth of the strengthening precipitates due to thermal cycle of FSSW.  相似文献   
7.
《Advanced Robotics》2013,27(11):1253-1279
This work presents a kinematic modeling method for wheeled mobile robots with slip based on physical principles. First, we present the kinematic modeling of a mobile robot with no-slip considering four types of wheels: fixed, centered orientable, off-centered orientable (castor) and Swedish (also called Mecanum, Ilon or universal). Then, the dynamics of a wheeled mobile robot based on Lagrange formulation are derived and discussed. Next, a quasi-static motion is considered to obtain the kinematic conditions that provide the slip modeling equations. Several types of traction models for the slip between the wheel and the floor are indicated. In particular, for a frictional force linearly dependent on the sliding velocity, the no-slip kinematic equation of the wheeled mobile robot is related, through the weighted least-squares algorithm, with the slip modeling equations. To illustrate the applications of the proposed approach a tricycle vehicle is considered in a real situation. The experimental results obtained for the slip kinematic model are compared with the ones obtained for the well-known Kalman filter.  相似文献   
8.
Abstract

This research programme evaluates the as welded properties of Al 7136-T76511 extrusions joined through friction stir welding (FSW). Microstructural characterisation and mechanical testing were performed on the baseline material and on panels friction stir welded at 250 and 350 rev min–1 (all other weld parameters held constant). Transmission electron microscopy revealed the microstructural features in each of the unique weld regions and demonstrated that the precipitate density and morphology in these regions correlates with the temperature profile produced by the FSW process. A thermal model of FSW is developed that utilises an energy based scaling factor to account for tool slip. The slip factor is derived from an empirical relationship between the ratio of the maximum welding temperature to the solidus temperature and energy per unit length of weld. The thermal model successfully predicts the maximum welding temperatures and profiles over a range of energy levels. The mechanical behaviour after welding is correlated to the temperature distribution predicted by the model and to the observed microstructural characteristics. As welded mechanical properties of the alloy trended positively with the energy per unit length of weld, i.e. the highest joint efficiency was achieved at the highest welding temperature.  相似文献   
9.
Abstract

Continuous drive friction welding studies on sintered powder metallurgical (P/M) steel preforms–wrought mild steel combination are reported in the present study. The work is a preliminary study to optimise the friction welding parameters and data generated by the present work is expected to contribute to friction welding of dissimilar and similar sintered P/M preforms to wrought metals or sintered P/M preforms – a planned future research work. Sound welds were obtained with all welding parameter combinations studied. The mechanical properties of welds were comparable to those of sintered P/M steel. Sintered P/M preforms deformed to a greater extent than wrought mild steel due to their low flow stress and thermal conductivity. The sintered density and other properties of the P/M preforms were found to dictate the deformation at the interface and consequently the weld strength. The results indicate that the current approach can be extended to other combinations of sintered P/M preforms.  相似文献   
10.
Abstract

Particle image velocimetry (PIV) was applied to estimate the velocity field on a weld pool surface with an oxide layer. A positive surface tension gradient drives an inward flow pattern from the boundary to centre of the weld pool, resulting in particles collecting on the centre line of the pool at the surface. Unsteady flow motions were observed by experimental visualisation of the particle flow, and the computed velocity field shows strong unsteady interfacial movement during inward flow. These unsteady flow motions are related to clockwise and counterclockwise vortices on the weld pool surface, which in turn affect both mass flow and energy transport. Both the qualitative flow motion and quantitative flow velocity are described in this work, which contributes to explaining the characteristic unsteady fluid flow in the weld pool, the measurements also provide experimental data for validation of numerical fluid flow models of the weld pool.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号