首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5786篇
  免费   571篇
  国内免费   376篇
电工技术   66篇
综合类   206篇
化学工业   1679篇
金属工艺   669篇
机械仪表   254篇
建筑科学   401篇
矿业工程   133篇
能源动力   318篇
轻工业   432篇
水利工程   69篇
石油天然气   144篇
武器工业   19篇
无线电   580篇
一般工业技术   1257篇
冶金工业   202篇
原子能技术   84篇
自动化技术   220篇
  2024年   20篇
  2023年   188篇
  2022年   132篇
  2021年   213篇
  2020年   190篇
  2019年   230篇
  2018年   191篇
  2017年   226篇
  2016年   192篇
  2015年   179篇
  2014年   247篇
  2013年   403篇
  2012年   326篇
  2011年   427篇
  2010年   295篇
  2009年   347篇
  2008年   321篇
  2007年   382篇
  2006年   290篇
  2005年   221篇
  2004年   214篇
  2003年   244篇
  2002年   241篇
  2001年   221篇
  2000年   189篇
  1999年   159篇
  1998年   126篇
  1997年   82篇
  1996年   54篇
  1995年   46篇
  1994年   38篇
  1993年   22篇
  1992年   16篇
  1991年   11篇
  1990年   8篇
  1989年   10篇
  1988年   8篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1977年   1篇
  1951年   2篇
排序方式: 共有6733条查询结果,搜索用时 15 毫秒
1.
The effect of copper oxide species on the CuO–NiO/CeO2 structure and the influence on the preferential CO oxidation in H2 excess (CO-PROX) reaction at low and high temperatures were investigated. Temperature-programmed surface reaction (TPSR), In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and X-ray photoelectron spectroscopy (XPS) results allowed determining the surface species. The maximum temperature of CO2 formation or selectivity decreased about 40 °C for the CuO–NiO/CeO2 catalyst compared to the NiO/CeO2, which suggests that the addition of Cu+ species increases the active sites due to interaction with the Ni–Ce structure. Therefore, the activity of the catalyst was closely related to the oxygen in vacancies and the formation of Cu+-carbonyl species of the redox mechanism. Besides, the superior selectivity towards CO2 below 150 °C depends on the carbonyl stabilization at the surface, inhibiting the adsorption and subsequent oxidation of H2. Using TPSR and spectroscopic analyzes by DRIFTS and XPS allowed us to propose the reaction mechanisms for low and high temperatures.  相似文献   
2.
Here, a fluoride-assisted route for the controlled in-situ synthesis of metal nanoparticles (NPs) (i.e., AgNPs, AuNPs) on polydimethylsiloxane (PDMS) is reported. The size and coverage of the NPs on the PDMS surface are modulated with time and over space during the synthetic process, leveraging the improved yield (10×) and faster kinetics (100×) of NP formation in the presence of F ions, compared to fluoride-free approaches. This enables the maskless preparation of both linear and step gradients and patterns of NPs in 1D and 2D on the PDMS surface. As an application in flexible plasmonics/photonics, continuous and step-wise spatial modulations of the plasmonic features of PDMS slabs with 1D and 2D AgNP gradients on the surface are demonstrated. An excellent spatially resolved tuning of key optical parameters, namely, optical density from zero to 5 and extinction ratio up to 100 dB, is achieved with AgNP gradients prepared in AgF solution for 12 minutes; the performance are comparable to those of commercial dielectric/interference filters. When used as a rejection filter in optical fluorescence microscopy, the AgNP-PDMS slabs are able to reject the excitation laser at 405 nm and retain the green fluorescence of microbeads (100 µm) used as test cases.  相似文献   
3.
A new TiO2-containing bioactive glass and glass-ceramics based on 50SiO2-(45-X)CaO-(XTiO2)-5P2O5 system was designed using a sol–gel technique (where X = 5, 7.5 and 10 wt %). The roles of the crystallization behavior and physicochemical characteristics of the designed glass and glass-ceramics which were played in the introduction of TiO2 substitutions were investigated. Moreover, cell proliferation and differentiation were evaluated against human osteosarcoma cells (Saos-2). The TiO2/CaO replacements led to the formation of a stronger glass structure and thus increased thermal parameters and the chemical stabilization of the designed materials. The FTIR data confirmed the existence of Ti within the glass and glass-ceramics samples, and no remarkable effect on their chemical integrity was observed. The XRD patterns indicated that calcium-containing minerals, including Ca2SiO4,Ca3(PO4)2, Ca(Ti,Si)O5, CaTiSiO5, and Ca15(PO4)2·(SiO4)6 phases were developed as a role of structure/texture under the applied heat-treatment. The results of the cytotoxicity test proved that a safe sample dose is 12–50 μg/ml, at which cell viability is ≥ 85%. The cell differentiation determined by ALP test proved the superiority of glass-ceramics compared with their native glasses. Therefore, the obtained materials could be safely used as novel biocompatible materials for the regeneration of bone tissue.  相似文献   
4.
Here, LiY(WO4)2 nanotubes are prepared via a feasible electrospinning technique. This new anode material shows excellent electrochemical properties. The capacity loss of LiY(WO4)2 nanotubes is as low as 6.9% after 156 cycles, while bulk LiY(WO4)2 presents the capacity loss higher than 55.0%. Even after 600 long-life cycles, the capacity loss of the nanotubes is only 9%. It can be seen that the hollow structure with a rough surface and a porous morphology contributes to the improvement of electrochemical performance. Furthermore, online X-ray diffraction (XRD) method is firstly applied to understand the lithium ions insertion/extraction mechanism of LiY(WO4)2 nanotubes. It can be concluded that it is an asymmetrical two-phase reaction. A phase transformation from LiY(WO4)2 to Li3Y(WO4)2 can be obviously seen from the in situ XRD during discharge process. While Li2Y(WO4)2 appears as an intermediate phase with a reverse charge reaction. In addition, in situ XRD also demonstrates that LiY(WO4)2 nanotubes have surprised electrochemical reversibility. All the above results indicate that LiY(WO4)2 nanotubes can be expected to be anode candidate for rechargeable lithium ion batteries (LIBs).  相似文献   
5.
The structural changes induced in a CoCrCuFeNi multicomponent nano-crystalline high-entropy alloy (HEA) under fast electron irradiation were investigated by in-situ transmission electron microscopy (TEM) using a high voltage electron microscope (HVEM). A fine-grained face centered cubic (fcc) single phase was obtained in the sputtered specimens. The fcc solid solution showed high phase stability against irradiation over a wide temperature range from 298 to 773 K, and remained as the main constituent phase even when the samples were irradiated up to 40 displacement per atom (dpa). Moreover, the irradiation did not seem to induce grain coarsening. This is the first report on the irradiation damage in 5-component HEA under MeV electron irradiation.  相似文献   
6.
7.
《Ceramics International》2021,47(21):30051-30060
Hydroxyapatite (HA) is a highly regarded synthetic bone graft material. Porous HA ceramics blocks are used to substitute harvested natural bone grafts. Being similar to bone mineral, HA material integrates with the host bone through surface osteointegration and slowly resorb along with the natural bone remodeling process. The blocks in use currently have random and tortuous pore structures. The present work explores the usefulness of cage-like HA ceramic design with end-to-end open pores, with the help of in vitro cell culture methods. Such a structure, on implantation, will take up the blood factors and cells and host the bone remodeling process inside the bulk of the cage, leading to early healing. In the study, HA samples with aligned through-pores were prepared and explored in vitro, with a focus on how the pores host the cells inside and to what level the cells maintain their activity. Human osteoblast-like cells (HOS) were used, at different seeding and culturing approaches. Cell seeding was done through (i) conventional large volume cell suspension, (ii) a confined mini chamber with a limited volume of cell suspension, and (iii) placing a concentrated drop of cell suspension directly on top of the scaffold. The third approach gave the best cell adhesion and proliferation, and hence used for further explorations. A dynamic culture system was designed in-house by bifurcating the cell culture wells using vertical inserts, holding the samples horizontally with their ends open to both sides, and making the media flow across using a rocker platform. The HOS cell adhesion, viability and proliferation were tested in the HA cages, in static and dynamic culture conditions, with conventional porous ceramics as the control. The cell infiltration was deeper and the cell viability over a period of 7 days was significantly higher in dynamic culture conditions in the test samples.  相似文献   
8.
The development of a miniature triaxial apparatus is presented. In conjunction with an X-ray micro-tomography (termed as X-ray μCT hereafter) facility and advanced image processing techniques, this apparatus can be used for in situ investigation of the micro-scale mechanical behavior of granular soils under shear. The apparatus allows for triaxial testing of a miniature dry sample with a size of 8mm×16mm (diameter × height). In situ triaxial testing of a 0.4–0.8 mm Leighton Buzzard sand (LBS) under a constant confining pressure of 500 kPa is presented. The evolutions of local porosities (i.e., the porosities of regions associated with individual particles), particle kinematics (i.e., particle translation and particle rotation) of the sample during the shear are quantitatively studied using image processing and analysis techniques. Meanwhile, a novel method is presented to quantify the volumetric strain distribution of the sample based on the results of local porosities and particle tracking. It is found that the sample, with nearly homogenous initial local porosities, starts to exhibit obvious inhomogeneity of local porosities and localization of particle kinematics and volumetric strain around the peak of deviatoric stress. In the post-peak shear stage, large local porosities and volumetric dilation mainly occur in a localized band. The developed triaxial apparatus, in its combined use of X-ray μCT imaging techniques, is a powerful tool to investigate the micro-scale mechanical behavior of granular soils.  相似文献   
9.
This paper reviews recent studies, that not only includes both experiments and modeling components, but celebrates a close coupling between these techniques, in order to provide insights into the plasticity and failure of polycrystalline metals. Examples are provided of studies across multiple-scales, including, but not limited to, density functional theory combined with atom probe tomography, molecular dynamics combined with in situ transmission electron miscopy, discrete dislocation dynamics combined with nanopillars experiments, crystal plasticity combined with digital image correlation, and crystal plasticity combined with in situ high energy X-ray diffraction. The close synergy between in situ experiments and modeling provides new opportunities for model calibration, verification, and validation, by providing direct means of comparison, thus removing aspects of epistemic uncertainty in the approach. Further, data fusion between in situ experimental and model-based data, along with data driven approaches, provides a paradigm shift for determining the emergent behavior of deformation and failure, which is the foundation that underpins the mechanical behavior of polycrystalline materials.  相似文献   
10.
《Ceramics International》2020,46(10):16548-16555
In this article, NiFe2O4 nanoparticles (NPs) were prepared by co-precipitation method with subsequent thermal annealing leading to obtainment NPs with average sizes of 78 nm. Structure and magnetic analysis were performed by X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy and vibrating sample magnetometry techniques. Stability of NiFe2O4 NPs was evaluated in PBS solution during 20 days. The toxicity of prepared NPs was evaluated in vitro using different cancer cell lines: HeLa (cervical cancer cell), PC-3 (prostate cancer cell). Fibroblasts like cells of L929 obtained from subcutaneous adipose tissue of mouse were used as normal cells. Results indicate successful synthesis of NiFe2O4 NPs that exhibit low cytotoxicity in concentration range from 1 to 100 μg/ml. Presented physical and biological results indicate the possibility of application investigated magnetic nanoparticles in hyperthermia, targeted drug delivery, magnetic resonance imaging or cell separation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号