首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19851篇
  免费   1379篇
  国内免费   492篇
电工技术   349篇
技术理论   2篇
综合类   1264篇
化学工业   11187篇
金属工艺   439篇
机械仪表   1070篇
建筑科学   672篇
矿业工程   184篇
能源动力   248篇
轻工业   753篇
水利工程   81篇
石油天然气   1042篇
武器工业   159篇
无线电   513篇
一般工业技术   2529篇
冶金工业   195篇
原子能技术   138篇
自动化技术   897篇
  2024年   48篇
  2023年   184篇
  2022年   222篇
  2021年   350篇
  2020年   356篇
  2019年   398篇
  2018年   364篇
  2017年   480篇
  2016年   541篇
  2015年   599篇
  2014年   995篇
  2013年   1022篇
  2012年   1328篇
  2011年   1386篇
  2010年   1057篇
  2009年   1210篇
  2008年   1110篇
  2007年   1396篇
  2006年   1392篇
  2005年   1186篇
  2004年   995篇
  2003年   888篇
  2002年   723篇
  2001年   607篇
  2000年   493篇
  1999年   495篇
  1998年   354篇
  1997年   298篇
  1996年   196篇
  1995年   182篇
  1994年   173篇
  1993年   179篇
  1992年   130篇
  1991年   90篇
  1990年   57篇
  1989年   59篇
  1988年   31篇
  1987年   20篇
  1986年   14篇
  1985年   28篇
  1984年   27篇
  1983年   23篇
  1982年   24篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
2.
Increasing the reaction temperature of the living cationic polymerization of isobutylene is crucial for industrial production due to the cost of refrigeration. The reaction temperature increase was achieved with an accelerated reaction rate using a flow reaction system. The polymerization conditions, including the flow reactor design, were based on the results of kinetic studies. Utilizing a milli‐scale flow reactor, polyisobutylene, which has a narrow molecular weight distribution, was obtained within a considerably short residence time at a high temperature. Furthermore, it was confirmed that the value of Mw/Mn correlates with the product of the Reynolds number and the angle of collision.  相似文献   
3.
Material encapsulation is a relatively new technique for coating a micro/nanosize particle or droplet with polymeric or inorganic shell. Encapsulation technology has many applications in various fields including drug delivery, cosmetic, agriculture, thermal energy storage, textile, and self-healing polymers. Poly(methyl methacrylate) (PMMA) is widely used as shell material in encapsulation due to its high chemical stability, biocompatibility, nontoxicity, and good mechanical properties. The main approach for micro/nanoencapsulation of materials using PMMA as shell comprises emulsion-based techniques such as emulsion polymerization and solvent evaporation from oil-in-water emulsion. In the present review, we first focus on the encapsulation techniques of liquid materials with PMMA shell by analyzing the effective processing parameters influencing the preparation of PMMA micro/nanocapsules. We then describe the morphology of PMMA capsules in emulsion systems according to thermodynamic relations. The techniques to investigation of mechanical properties of capsule shell and the release mechanisms of core material from PMMA capsules were also investigated. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48039.  相似文献   
4.
A 2D computational fluid dynamics (Eulerian–Eulerian) multiphase flow model coupled with a population balance model (CFD-PBM) was implemented to investigate the fluidization structure in terms of entrance region in an industrial-scale gas phase fluidized bed reactor. The simulation results were compared with the industrial data, and good agreement was observed. Two cases including perforated distributor and complete sparger were applied to examine the flow structure through the bed. The parametric sensitivity analysis of time step, number of node, drag coefficient, and specularity coefficient was carried out. It was found that the results were more sensitive to the drag model. The results showed that the entrance configuration has significant effect on the flow structure. While the dead zones are created in both corners of the distributors, the perforated distributor generates more startup bubbles, heterogeneous flow field, and better gas–solid interaction above the entrance region due to jet formation.  相似文献   
5.
Discrete Element Method (DEM) has been used for numerical investigation of sintering-induced structural deformations occurring in inverse opal photonic structures. The influence of the initial arrangement of template particles on the stability of highly porous inverse opal α-Al2O3 structures has been analyzed. The material transport, densification, as well as formation of defects and cracks have been compared for various case studies. Three different stages of defects formation have been distinguished starting with local defects ending with intrapore cracks. The results show that the packing of the template particles defined during the template self-assembly process play a crucial role in the later structural deformation upon thermal exposure. The simulation results are in very good agreement with experimental data obtained from SEM images and previous studies by ptychographic X-ray tomography.  相似文献   
6.
A series of methacrylate-acrylonitrile-butadiene-styrene (MABS) resins was prepared using bulk polymerization. The polarity of the continuous phase and the compatibility of two phases were changed by adjusting the methyl methacrylate (MMA) content, choosing values that were close to styrene-butadiene rubber solubility value. The possibility of controlling the microstructure of the MABS resin by changing the polarity of the components and the compatibility of two phases was assessed. The dynamic mechanical analysis shows that the compatibility of two phases varies with the MMA content. The morphological analysis shows that increasing MMA contents results in a gradual decrease in the sub-inclusion structure with a network skeleton of rubber particles, and that all the particles become solid rubber when the MMA content reaches 75%. The sub-inclusion structure reappears but does not have a network skeleton when the MMA content is 90%. The impact strength and morphological analysis indicate that the solid rubber particles and the sub-inclusion structure with a network skeleton provide excellent toughness, while the sub-inclusion structure without a network skeleton does not. In contrast, the transmittance of the ABS resin first increased and then decreased with increasing MMA content.  相似文献   
7.
Although many colloidal assembling systems have been reported, most systems suffer from severe aggregation under high solid concentrations, which can often be observed in typical hetero-aggregation system. In this study, we created a hetero-assembly system using concentrated (~50 vol%) suspensions by mixing large SiO2 particles modified with polyacrylic acid partially complexed with oleylamine (PAA-OAm) and small SiO2 particles modified with polyethyleneimine partially complexed with oleic acid (PEI-OA) in a non-aqueous solvent. We demonstrated that hetero-assembly is driven by the interactions between the uncomplexed carboxyl/amine groups of the PAA/PEI present on the particles, while severe aggregation is simultaneously prevented by the steric repulsions of the aliphatic oleyl chains. Comparison of the cross sections of the in-situ solidified hetero-assembled suspensions with those of ideally assembled structures which were reproduced by a simulation considering the statistical distribution of particles strongly supported successful particle assembling via the proposed approach. The results revealed that the OA content in the PEI-OA complex was the dominant factor that controlled the dispersion and assembling state of the binary particles. The significance of this study is that our findings will provide a class of colloidal dispersion state which binary particles were assembled in a high solid content suspension without forming strong aggregates.  相似文献   
8.
A series of novel aliphatic poly(β‐thioether ester)s with various methylene group contents were prepared by direct lipase‐catalyzed polycondensation of the monomer with an acid‐labile β‐thiopropionate group. The polycondensation reaction using immobilized lipase B from Candida antarctica was carried out in diphenyl ether at 90 °C. Poly(β‐thioether ester)s with high molecular weights of 20 500–57 000 Da and narrow polydispersities in the range 1.40–1.48 were obtained. Thermogravimetric analysis, differential scanning calorimetry and wide‐angle X‐ray diffraction were used to investigate the thermal properties and crystal structures of these polyesters. All the poly(β‐thioether ester)s were semicrystalline polymers and thermally stable up to at least 200 °C. In vitro degradation studies showed that they can rapidly degrade under acidic conditions by the hydrolysis of the β‐thiopropionate groups, suggesting their potential as acid‐degradable polymeric materials. © 2019 Society of Chemical Industry  相似文献   
9.
Very high resolution inverse synthetic aperture radar (ISAR) imaging of fast rotating targets is a complicated task. There may be insufficient pulses or may introduce migration through range cells (MTRC) during the coherent processing interval (CPI) when we use the conventional range Doppler (RD) ISAR technique. With compressed sensing (CS) technique, we can achieve the high-resolution ISAR imaging of a target with limited number of pulses. Sparse representation based method can achieve the super resolution ISAR imaging of a target with a short CPI, during which the target rotates only a small angle and the range migration of the scatterers is small. However, traditional CS-based ISAR imaging method generally faced with the problem of basis mismatch, which may degrade the ISAR image. To achieve the high resolution ISAR imaging of fast rotating targets, this paper proposed a pattern-coupled sparse Bayesian learning method for multiple measurement vectors, i.e. the PC-MSBL algorithm. A multi-channel pattern-coupled hierarchical Gaussian prior is proposed to model the pattern dependencies among neighboring range cells and correct the MTRC problem. The expectation-maximization (EM) algorithm is used to infer the maximum a posterior (MAP) estimate of the hyperparameters. Simulation results validate the effectiveness and superiority of the proposed algorithm.  相似文献   
10.
《Ceramics International》2021,47(23):32699-32709
Digital light processing (DLP)-based ceramic stereolithography has attracted significant attentions due to the high printing speed and high dimensional accuracy of DLP printers. However, undesired dropping of unfinished ceramic parts during printing, owing to inadequate adhesion between the first cured layer and the substrate of the building platform, still remains a challenge. In this study, the relationship between the adhesion properties of ultraviolet (UV)-curable alumina (α-Al2O3) suspensions and the functionalities and structures of UV-curable acrylate monomers was investigated. With an increase in the proportions of monofunctional monomers, the adhesion abilities of UV-curable alumina suspensions enhanced because of reduced volume shrinkage, however, inferior curing performances were observed due to a decrease in the double bond densities. Furthermore, the large-volume branched chain structures in monofunctional monomers and ethyoxyl groups in polyfunctional monomers effectively decreased the volume contraction, improving the adhesion performances of UV-curable alumina suspensions and facilitating the conversion of double bonds to provide excellent curing properties, further guaranteeing strong adhesion of these suspensions to the substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号