首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1907篇
  免费   35篇
  国内免费   29篇
电工技术   7篇
综合类   66篇
化学工业   769篇
金属工艺   119篇
机械仪表   50篇
建筑科学   73篇
矿业工程   26篇
能源动力   322篇
轻工业   104篇
水利工程   5篇
石油天然气   41篇
武器工业   10篇
无线电   26篇
一般工业技术   191篇
冶金工业   39篇
原子能技术   44篇
自动化技术   79篇
  2024年   2篇
  2023年   22篇
  2022年   52篇
  2021年   54篇
  2020年   57篇
  2019年   46篇
  2018年   46篇
  2017年   53篇
  2016年   47篇
  2015年   50篇
  2014年   111篇
  2013年   141篇
  2012年   81篇
  2011年   155篇
  2010年   117篇
  2009年   137篇
  2008年   138篇
  2007年   95篇
  2006年   77篇
  2005年   69篇
  2004年   42篇
  2003年   54篇
  2002年   51篇
  2001年   38篇
  2000年   26篇
  1999年   34篇
  1998年   24篇
  1997年   10篇
  1996年   26篇
  1995年   24篇
  1994年   16篇
  1993年   14篇
  1992年   6篇
  1991年   14篇
  1990年   7篇
  1989年   18篇
  1988年   7篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有1971条查询结果,搜索用时 15 毫秒
1.
Mg-based hydride is a promising hydrogen storage material, but its capacity is hindered by the kinetic properties. In this study, Mg–Mg2Ni–LaHx nanocomposite is formed from the H-induced decomposition of Mg98Ni1·67La0.33 alloy. The hydrogen capacity of 7.19 wt % is reached at 325 °C under 3 MPa H2, attributed to the ultrahigh hydrogenation capacity in Stage I. The hydrogen capacity of 5.59 wt % is achieved at 175 °C under 1 MPa H2. The apparent activation energies for hydrogen absorption and desorption are calculated as 57.99 and 107.26 kJ/mol, which are owing to the modified microstructure with LaHx and Mg2Ni nanophases embedding in eutectic, and tubular nanostructure adjacent to eutectic. The LaH2.49 nanophase can catalyze H2 molecules to dissociate and H atoms to permeate due to its stronger affinity with H atoms. The interfaces of these nanophases provide preferential nucleation sites and alleviate the “blocking effect” together with tubular nanostructure by providing H atoms diffusion paths after the impingement of MgH2 colonies. Therefore, the superior hydrogenation properties are achieved because of the rapid absorption process of Stage I. The efficient synthesis of nano-catalysts and corresponding mechanisms for improving hydrogen storage properties have important reference to related researches.  相似文献   
2.
The combustion characteristics of ammonia/methanol mixtures were investigated numerically in this study. Methanol has a dramatic promotive effect on the laminar burning velocity (LBV) of ammonia. Three mechanisms from literature and another four self-developed mechanisms constructed in this study were evaluated using the measured laminar burning velocities of ammonia/methanol mixtures from Wang et al. (Combust.Flame. 2021). Generally, none of the selected mechanisms can precisely predict the measured laminar burning velocities at all conditions. Aiming to develop a simplified and reliable mechanism for ammonia/methanol mixtures, the constructed mechanism utilized NUI Galway mechanism (Combust.Flame. 2016) as methanol sub-mechanism and the Otomo mechanism (Int. J. Hydrogen. Energy. 2018) as ammonia sub-mechanism was optimized and reduced. The reduced mechanism entitled ‘DNO-NH3’, can accurately reproduce the measured laminar burning velocities of ammonia/methanol mixtures under all conditions. A reaction path analysis of the ammonia/methanol mixtures based on the DNO-NH3 mechanism shows that methanol is not directly involved in ammonia oxidation, instead, the produced methyl radicals from methanol oxidization contribute to the dehydrogenation of ammonia. Besides, NOx emission analysis demonstrates that 60% methanol addition results in the highest NOx emissions. The most important reactions dominating the NOx consumption and production are identified in this study.  相似文献   
3.
Independent hydrogen production from petrochemical wastewater containing mono-ethylene glycol (MEG) via anaerobic sequencing batch reactor (ASBR) was extensively assessed under psychrophilic conditions (15–25 °C). A lab-scale ASBR was operated at pH of 5.50, and different organic loading rates (OLR) of 1.00, 1.67, 2.67, and 4.00 gCOD/L/d. The hydrogen yield (HY) progressed from 134.32 ± 10.79 to 189.09 ± 22.35 mL/gMEGinitial at increasing OLR from 1.00 to 4.00 gCOD/L/d. The maximum hydrogen content of 47.44 ± 3.60% was achieved at OLR of 4.0 gCOD/L/d, while methane content remained low (17.76 ± 1.27% at OLR of 1.0 gCOD/L/d). Kinetic studies using four different mathematical models were conducted to describe the ASBR performance. Furthermore, two batch-mode experiments were performed to optimize the nitrogen supplementation as a nutrient (C/N ratio), and assess the impact of salinity (as gNaCl/L) on hydrogen production. HY substantially dropped from 62.77 ± 4.09 to 6.02 ± 0.39 mL/gMEGinitial when C/N ratio was increased from 28.5 to 114.0. Besides, the results revealed that salinity up to 10.0 gNaCl/L has a relatively low inhibitory impact on hydrogen production. Eventually, the cost/benefit analysis showed that environmental and energy recovery revenues from ASBR were optimized at OLR of 4.0 gCOD/L/d (payback period of 7.13 yrs).  相似文献   
4.
A novel multichannel reactor with a bifurcation inlet manifold, a rectangular outlet manifold, and sixteen parallel minichannels with commercial CuO/ZnO/Al2O3 catalyst for methanol steam reforming was numerically investigated in this paper. A three-dimensional numerical model was established to study the heat and mass transfer characteristics as well as the chemical reaction rates. The numerical model adopted the triple rate kinetic model of methanol steam reforming which can accurately calculate the consumption and generation of each species in the reactor. The effects of steam to carbon molar ratio, weight hourly space velocity, operating temperature and catalyst layer thickness on the methanol steam reforming performance were evaluated and discussed. The distributions of temperature, velocity, species concentration, and reaction rates in the reactor were obtained and analyzed to explain the mechanisms of different effects. It is suggested that the operating temperature of 548 K, steam to carbon ratio of 1.3, and weight hourly space velocity of 0.67 h−1 are recommended operating conditions for methanol steam reforming by the novel multichannel reactor with catalyst fully packed in the parallel minichannels.  相似文献   
5.
6.
Robust nonlinear feedforward–feedback controllers are designed for a multiscale system that dynamically couples kinetic Monte Carlo (KMC) and finite difference (FD) simulation codes. The coupled codes simulate the copper electrodeposition process for manufacturing on-chip copper interconnects in electronic devices. The control objective is to regulate the current density subject to the condition that the steady-state fluctuation of the overpotential remains bounded within ±0.01 V. The controller designs incorporate a low-order stochastic model that captures the input–output behavior of the coupled KMC–FD code. The controllers achieve the objectives and the closed-loop responses implemented on the low-order model and the coupled KMC–FD code match well within stochastic variations. The nonlinear feedforward control reduces the rise time of the controller response while the feedback control ensures robustness in the presence of model uncertainty.  相似文献   
7.
W de Jong  A Pirone 《Fuel》2003,82(9):1139-1147
Characterisation of two biomass fuels (pelletised Miscanthus Giganteus and wood) was performed using thermogravimetric analysis with measurement of products by means of Fourier transform infrared spectroscopy (TG-FTIR). Three heating rate profiles were applied (10, 30 and 100 °C/min), with a final temperature of 900 °C. HCN and HNCO were found to be the major N-products, while the NH3 fraction was detected to a minor extent. Kinetic parameters were obtained from the TG-FTIR results using a model based on parallel first-order reactions with a Gaussian distribution of activation energies. On the basis of the above kinetic analysis and product yields, input files for the functional group-devolatilisation, vaporisation, cross-linking biomass-pyrolysis model were prepared. The fit of model parameters to TG-FTIR product-evolution data was found to be generally good, but the model-predicted yields for some species did not fit experimental data at all heating rates. Further improvements in the model are needed to resolve above difficulty.  相似文献   
8.
石油沥青60℃动力粘度测定影响因素的探讨   总被引:1,自引:0,他引:1  
粘度是表征沥青稠度的一个重要指标。通过论述石油沥青粘度测定法(真空毛细管法)中毛细管的选择、温度、真空度、取样量等对试验结果的影响及试验过程中的其它注意事项,表明了在测定石油沥青的60℃动力粘度时,必须严格按照试验方法的要求进行测定,以保证试验结果的准确性。  相似文献   
9.
A kinetic model for simulation of the MTO process over SAPO-18 catalyst in a wide range of operating conditions has been proposed. The kinetic model predicts the experimental evolution of reaction products with time on stream, which follows three consecutive periods: initiation (where olefin production increases), a period of maximum olefin production and a period in which this production decreases. The kinetic scheme takes into account these three steps that evolve with time on stream: formation of active intermediate compounds, an step where olefins are formed by reaction of oxygenates (methanol/DME) with these intermediates and deactivation of intermediates by degradation to coke. The presence of water in the reaction medium attenuates the reaction rate of these steps. Discrimination of kinetic equations and calculation of the parameters of best fit have been carried out by solving the mass conservation equations of the individual components of the kinetic scheme together with the kinetic equation for deactivation and taking into account the effect of water on the kinetics of each step.  相似文献   
10.
The hydrolysis of isocyanic acid in the gaseous phase has been investigated at temperatures between 553 and 613 K by mass spectrometry and evaluated to obtain the corresponding kinetic data. The reaction order and reaction constant have been determined. Finally, the influence of water on the catalysed formation of melamine from isocyanic acid under the operating conditions employed has been investigated in order to determine whether there is a need to try the process gas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号