首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21514篇
  免费   2268篇
  国内免费   1561篇
电工技术   2527篇
综合类   1681篇
化学工业   1412篇
金属工艺   1769篇
机械仪表   1040篇
建筑科学   2007篇
矿业工程   604篇
能源动力   1461篇
轻工业   572篇
水利工程   949篇
石油天然气   2389篇
武器工业   149篇
无线电   2628篇
一般工业技术   2225篇
冶金工业   547篇
原子能技术   1070篇
自动化技术   2313篇
  2024年   62篇
  2023年   240篇
  2022年   537篇
  2021年   685篇
  2020年   658篇
  2019年   643篇
  2018年   575篇
  2017年   782篇
  2016年   779篇
  2015年   859篇
  2014年   1411篇
  2013年   1371篇
  2012年   1640篇
  2011年   2016篇
  2010年   1422篇
  2009年   1431篇
  2008年   1398篇
  2007年   1591篇
  2006年   1354篇
  2005年   1094篇
  2004年   852篇
  2003年   771篇
  2002年   633篇
  2001年   506篇
  2000年   351篇
  1999年   287篇
  1998年   208篇
  1997年   218篇
  1996年   191篇
  1995年   146篇
  1994年   141篇
  1993年   104篇
  1992年   76篇
  1991年   71篇
  1990年   45篇
  1989年   60篇
  1988年   38篇
  1987年   20篇
  1986年   16篇
  1985年   15篇
  1984年   5篇
  1982年   3篇
  1981年   4篇
  1980年   7篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1961年   3篇
  1959年   11篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
A new route of materials synthesis, namely, high-temperature, high-pressure reactive planetary ball milling (HTPRM), is presented. HTPRM allows for the mechanosynthesis of materials at fully controlled temperatures of up to 450 °C and pressures of up to 100 bar of hydrogen. As an example of this application, a successful synthesis of magnesium hydride is presented. The synthesis was performed at controlled temperatures (room temperature (RT), 100, 150, 200, 250, 300, and 325 °C) while milling in a planetary ball mill under hydrogen pressure (>50 bar). Very mild milling conditions (250 rpm) were applied for a total milling time of 2 h, and a milling vial with a relatively small diameter (φ = 53 mm, V = ~0.06 dm3) was used. The effect of different temperatures on the synthesis kinetics and outcome were examined. The particle morphology, phase composition, reaction yield, and particle size were measured and analysed by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) techniques. The obtained results showed that increasing the temperature of the process significantly improved the reaction rate, which suggested the great potential of this technique for the mechanochemical synthesis of materials.  相似文献   
2.
The charge sources, as well as the charging mechanism of the contact electrification (CE) of polymers, are still debatable. Since CE is accompanied by destruction, it is considered that “hard contacting” via ball milling can induce covalent bond scission and produce naked-activated-charge sources. Regarding “soft contacting” via nano-scale sliding, which does not induce covalent bond scission, a frontier-electron, “f-electron, of the naked-activated-charge source is crucial to electron transfer among the naked-activated-charge sources. Here, we configure naked-activated-charge-source models, naked-activated-mechano-anion, and naked-activated-mechano-cation, which are produced by mechanical energy induced heterogeneous covalent bond scission, as well as naked-activated-mechano-radicals that are produced by homogeneous covalent bond scission. Regarding “soft contacting” among naked-activated-charge sources in a vacuum, f-electron can be transferred from a donor to an acceptor if the energy level of the donor is higher than that of the acceptor. The net amount of the normalized transferred-f-electrons is obtained by adopting settings in which the average energy level of the naked-activated-charge sources (as the donors) is higher than that of the sources employed as acceptors. Thus, the surfaces comprising the donors and acceptors will exhibit positive and negative net surface charges, respectively. We conclude that net surface charges depend on the average energy level of naked-activated-charge sources. Further, we observe that the alignment of polyethylene (PE)-polyvinyl chloride (PVC)-polytetrafluoroethylene (PTFE) to the average energy level is identical to that of the triboelectric series.  相似文献   
3.
随着网络建设以及信息化教学方法在高校教学过程中的应用普及,越来越多的高校使用在线巡课系统对教师的教学过程进行跟踪和管理,以便发现课堂教学中的亮点、问题和不足。文章提出的在线巡课系统,基于声源定位的技术,对传统的在线巡课系统做出了改进,解决了已有巡课系统中“只闻其声,不见其人”的问题,能够更直观地跟踪到教师的教学过程,包括教学行为以及师生互动过程,有效提升教务人员巡课效果和体验感受。  相似文献   
4.
In this paper, a new inverse identification method of constitutive parameters is developed from full kinematic and thermal field measurements. It consists in reconstructing the heat source field from two different approaches by using the heat diffusion equation. The first one requires the temperature field measurement and the value of the thermophysical parameters. The second one is based on the kinematic field measurement and the choice of a thermo-hyperelastic model that contains the parameters to be identified. The identification is carried out at the local scale, ie, at any point of the heat source field, without using the boundary conditions. In the present work, the method is applied to the challenging case of hyperelasticity from a heterogeneous test. Due to large deformations undergone by the rubber specimen tested, a motion compensation technique is developed to plot the kinematic and the thermal fields at the same points before reconstructing the heterogeneous heat source field. In the present case, the constitutive parameter of the Neo-Hookean model has been identified, and its distribution has been characterized with respect to the strain state at the surface of a cross-shaped specimen.  相似文献   
5.
为了成功预测竹林山煤矿综放高瓦斯矿井大采高工作面煤层瓦斯涌出量,以主采3号煤层为主要研究对象,针对3号煤层以往开采情况,通过布设测点测量其煤层瓦斯含量和了解相邻矿井瓦斯含量,采用分源预测法、回归法及统计法等预测方法得到了3号煤层瓦斯含量的分布规律,并绘制了3号煤层的瓦斯含量等值线图。对矿井不同生产时期的瓦斯含量进行预测,得到了生产前期、中期及后期采区的最大绝对瓦斯涌出量和最大相对瓦斯涌出量,说明了竹林山煤矿各个时期均属于高瓦斯矿井。  相似文献   
6.
The 3D structure electromagnetic computation presents several difficulties related to the volume mesh. In fact, the entire volume space must be taken into account even the smallest details. In this article, we propose a formulation based on the reciprocity theorem combined with the generalized equivalent circuit method to model a planar 3D structure with both coaxial and planar excitation. The major advantage of this formulation is the fact to reduce the computational volume into 2D ones in the discontinuity plane. In addition, we focused on the calculation of the discontinuity between the excitation source and the planar structure to determine the exact behavior of the electric coaxial excitation model. The obtained current density, electric field distributions, and the input impedance are presented and discussed in the following sections. An approximately good agreement of input impedance with those obtained by the simulator and measurement is shown.  相似文献   
7.
With superior properties of Mg such as high hydrogen storage capacity (7.6 wt% H/MgH2), low price, and low density, Mg has been widely studied as a promising candidate for solid-state hydrogen storage systems. However, a harsh activation procedure, slow hydrogenation/dehydrogenation process, and a high temperature for dehydrogenation prevent the use of Mg-based metal hydrides for practical applications. For these reasons, Mg-based alloys for hydrogen storage systems are generally alloyed with other elements to improve hydrogen sorption properties. In this article, we have added Na to cast Mg–La alloys and achieved a significant improvement in hydrogen absorption kinetics during the first activation cycle. The role of Na in Mg–La has been discussed based on the findings from microstructural observations, crystallography, and first principles calculations based on density functional theory. From our results in this study, we have found that the Na doped surface of Mg–La alloy systems have a lower adsorption energy for H2 compared to Na-free surfaces which facilitates adsorption and dissociation of hydrogen molecules leading to improvement of absorption kinetic. The effect of Na on the microstructure of these alloys, such as eutectic refinement and a density of twins is not highly correlated with absorption kinetics.  相似文献   
8.
Additive doping is one of the effective methods to overcome the shortcomings of MgH2 on the aspect of relatively high operating temperatures and slow desorption kinetics. In this paper, hollow g-C3N4 (TCN) tubes with a diameter of 2 μm are synthesized through the hydrothermal and high-temperature pyrolysis methods, and then nickel is chemically reduced onto TCN to form Ni/TCN composite at 278 K. Ni/TCN is then introduced into the MgH2/Mg system by means of hydriding combustion and ball milling. The MgH2–Ni/TCN composite starts to release hydrogen at 535 K, which is 116 K lower than the as-milled MgH2 (651 K). The MgH2–Ni/TCN composite absorbs 5.24 wt% H2 within 3500 s at 423 K, and takes up 3.56 wt% H2 within 3500 s, even at a temperature as low as 373 K. The apparent activation energy (Ea) of the MgH2 decreases from 161.1 to 82.6 kJ/mol by the addition of Ni/TCN. Moreover, the MgH2–Ni/TCN sample shows excellent cycle stability, with a dehydrogenation capacity retention rate of 98.0% after 10 cycles. The carbon material enhances sorption kinetics by dispersing and stabilizating MgH2. Otherwise, the phase transformation between Mg2NiH4 and Mg2NiH0.3 accelerates the re/dehydrogenation reaction of the composite.  相似文献   
9.
Magnesium aluminate-based materials were prepared by applying different methods: (i) mechanochemical milling of the initial mixture of magnesium and aluminium nitrate powders (in appropriate stoichiometric amounts) followed by heat treatment at temperatures of 650 °C and 850 °C and (ii) melting of the mixture of nitrate precursors at 240 °C followed by thermal treatment at 650 °C, 750 °C and 850 °C. The effect of synthesis method on the structure and morphology of the obtained solids was studied by using various techniques such as: nitrogen adsorption-desorption isotherms, powder XRD, IR spectroscopy and SEM. It was shown that the mechanochemical milling performed before calcination procedure leads to obtaining of nanocrystalline magnesium aluminate spinel phase at lower temperature of 650 °C in comparison with the method using thermal treatment only (at 750 °C). The obtained nanomaterials exhibit mesoporous structure.  相似文献   
10.
Harmonic elimination pulse width modulation (HEPWM) method has been widely applied to multilevel voltage source inverter (MVSI) to remove low frequency harmonics from its output voltage. However, the computation of the HEPWM switching angles for MVSI is very challenging due to several constraints, namely angle sequencing, very tight angular spacing and the numerous possibilities of angles distribution ratio. Realizing the potential of Differential Evolution (DE) to handle complex problems, this work proposes its application to solve the HEPWM problem for cascaded MVSI. Its emphasis is on improving the availability of HEPWM for higher output voltage by extending the maximum range of modulation index (M). It also removes the discontinuities in the switching angles and reduces the number of distribution ratio required to obtain the required solution. Compared to the most advanced (similar) work, i.e., 7-level MVSI with seventeen switching angles, DE covers a wider range of M; the maximum achievable M is 2.80. Furthermore, it exhibits very low second order distortion factor (DF2): for the worst case, the value of DF2 is 0.0014%. To verify the viability of the proposed algorithm, simulation is carried out and hardware prototype is constructed. Both results show very good agreement with the theoretical prediction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号