首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   0篇
  国内免费   9篇
综合类   2篇
化学工业   35篇
金属工艺   26篇
机械仪表   2篇
能源动力   1篇
无线电   17篇
一般工业技术   59篇
冶金工业   2篇
原子能技术   1篇
自动化技术   2篇
  2022年   6篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   4篇
  2016年   6篇
  2015年   4篇
  2014年   7篇
  2013年   12篇
  2012年   6篇
  2011年   15篇
  2010年   9篇
  2009年   8篇
  2008年   10篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2003年   6篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1995年   3篇
  1994年   2篇
  1990年   1篇
  1980年   1篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(22):31886-31893
In this contribution, SnFe2O4 nanoparticles were prepared by the solvothermal method, the structural properties were performed using X-Ray Diffraction (DRX) to prove the success of tin ferrite formation and to determine de crystals parameters. The size and morphological study were build using Scanning Electron Microscopy (SEM) and Transmission Electron microscopy (TEM), the results showed that the size of particles is uniform with a range of particles (5–7 nm). The magnetic properties were carried out using the SQUID device, the SnFe2O4 nanoparticles have a magnetic transition at 750 K. In addition, the hysteresis loops at low temperature displayed Ms and Mr equals to 23 emu/g and 6 emu/g, respectively. The magnetoresistance properties were investigated, the SnFe2O4 nanoparticles present a large magnetoresistance effect (80%). The experimental results are supplemented by model calculations utilizing density functional theory and Monte-Carlo simulations.  相似文献   
2.
We report a method to produce magnetic nanostructured semiconductor films based in ZnO doped with Nickel to control their magnetic properties. The method is based on a combined diffusion–oxidation process within a controlled atmosphere chamber to produce a uniform distribution of Ni ions in the ZnO films (ZnO:Ni). The synthesis of ZnO:Ni films is reported as well as the magnetoresistive characteristics, the used method yields films with reproducible and homogeneous properties. The films were also characterized structurally by X-Ray Diffraction (XRD) and Raman spectroscopy, and by Hall–van der Pauw measurements. The XRD measurements confirm the nanocrystalline films character. The films resulted of n-type conductivity with electron concentrations of ~1020 cm−3 in average and carrier mobilities of 5 cm2/V s. The Magnetoresistance (MR) behavior of the films at 300 K shows negative changes of ΔR~0.5% in accordance with the usual literature reports on samples produced by other methods.  相似文献   
3.
We compare the current density–voltage (JV) and magnetoconductance (MC) response of a poly(3-hexyl-thiophene) (P3HT) device (Au/P3HT(350 nm)/Al) before and after annealing above the glass transition temperature of 150 °C under vacuum. There is a decrease of more than 3 orders of magnitude in current density due to an increase of the charge injection barriers after de-doping through annealing. An increase, approaching 1 order of magnitude, in the negative MC response after annealing can be explained by a shift in the Fermi level due to de-doping, according to the bipolaron mechanism. We successfully tune the charge injection barrier through re-doping by photo-oxidation. This leads to the charge injection and transport transitioning from unipolar to ambipolar, as the bias increases, and we model the MC response using a combination of bipolaron and triplet-polaron interaction mechanisms.  相似文献   
4.
A new manganite type CMR material, La0.7Hg0.3MnO3 has been successfully synthesized and has been found to exhibit magnetoresistance (≈9%) at low fields (≈1.5 kG). The synthesis has been carried out through a solid state reaction route consisting of the formation of La0.7MnO3 followed by diffusion of Hg leading to La0.7Hg0.3MnO3. The as grown samples are polycrystalline and correspond to an orthorhombic unit cell with the lattice parameters; a=5.5183 Å, b=5.6383 Å and c=7.5368 Å. The typical grain size as revealed by scanning electron microscopy is in the range of 0.5–2 μm. The ρT behaviour shows a peak at TIM=227 K. The ρT behaviour above this temperature corresponds to that of an insulator and below this to that of a metal. The ρT behaviour remains unaltered when a magnetic field (Hdc=1.5 kG) is applied. However, with this magnetic field a drop in the resistivity is observed up to 77 K. At room temperature the magnetoresistance ratio (MRR) is too small but it steadily increases as the temperature is decreased. Thus, MRRs at 227.13 and 77 K are 3.41 and 9.05%, respectively, in an applied field of Hdc=1.5 kG. At a given temperature the variation in MRR with field Hdc is rapid at lower field values (Hdc<1.2 kG) and scales linearly for higher field values (Hdc>1.2 kG). It may be mentioned that the present work on the synthesis and magnetoresistance behaviour of La0.7Hg0.3MnO3, is the first of its type.  相似文献   
5.
With substitution of La by Tb in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3, the room temperature magnetoresistance △R/R_0drops at first, then undergoes an increase near x≈0.1, and finally drops again. The value of room temperaturemagnetoresistance at a field H=12 kOe for (La_(0.9)Tb_(0.1))_(0.67)Sr_(0.33)MnO_3 is -3.56%. The enhancement of the roomtemperature magnetoresistance induced by an appropriate Tb substitution in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3 is correlatedwith the shifts of the Curie temperature and metal-insulator temperature to near room temperature. The drop ofthe room temperature magnetoresistance at large Tb doping-contents may be due to its lower T_C and T_(MI) far fromthe room temperature.  相似文献   
6.
We theoretically investigate the magnetoresistance (MR) effect in a monolayer graphene modulated by both magnetic and electrical barriers, which can be experimentally realized by depositing two parallel metallic ferromagnetic tripes under an applied voltage on the top and bottom of a graphene. The tremendous MR can be found due to the significant difference between the transmissions through the parallel and antiparallel magnetization configurations, and the MR ratio strongly depends on the strength of the magnetic field and the height of the electric barrier. Therefore, we can control the MR effect by changing either of the two magnetic fields or the electric barrier to make a MR device based on a graphene.  相似文献   
7.
By applying the density functional theory and the nonequilibrium Green’s function formalism, we investigate the spin-polarized transport properties of a Fe-oligoporphyrin dimer (Fe-P2TA) sandwiched between two armchair single-walled carbon nanotube electrodes. The results show that the system can present high-efficiency magnetoresistance, spin-filtering, and low-bias negative differential resistance effects with the help of magnetic field modulation. The above results are explained by the evolution of the spin-polarized transmission spectra and the molecular projected self-consistent Hamiltonian eigenstates with applied bias. Therefore, the system provides the possibilities for a multifunctional molecular spintronic device design.  相似文献   
8.
Studies on spintronics have provided solid evidence that the grain boundaries (GBs) in polycrystalline manganite can produce a strong extrinsic magnetoresistance (MR). This type of MR, called Low-field MR (LFMR), is larger than the intrinsic MR and can be triggered over a wide range of temperature. However, the existence of more GBs would bring about the weakening of magnetism and decrease the magnitude of MR simultaneously. Here we show that during annealing the application of electric-current to a representative ferromagnetic manganite perovskite, polycrystalline La2/3Sr1/3MnO3 (LSMO), can produce more GBs and improve low-field magnetization, which leads to enhanced MR effect and field-response sensitivity as compared to the traditional-annealed sample. By using static micromagnetic models combined with the theories of spin-polarized intergrain tunneling and charge carrier hopping across domain wall, the observed enhancement of magnetoresistive response in current-annealed LSMO can be well explained.  相似文献   
9.
《Ceramics International》2016,42(6):6807-6816
A novel sol–gel method has been developed to deposit multiferroic nanocrystalline bismuth ferrite (BFO) thin films over Pt/Ti/SiO2/Si substrate by spin-coating technique with various thicknesses. It is found that the deposition parameters significantly influence the quality and the thickness of BiFeO3 films. The films are all uniform and adherent to Pt/Ti/SiO2/Si substrate. The spin-coated films are characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Atomic force microscope (AFM), photoluminescence spectroscopy (PL) and Fourier transform infrared spectroscopy (FTIR). Rhombohedral structure of BFO is confirmed from the XRD and FT-IR studies. The SEM image shows a porous structure formation of BFO over Pt/Ti/SiO2/Si substrate. The surface outgrowth for the films at various thicknesses is measured from root mean square (RMS) and surface roughness through AFM. The step height and the RMS are found to be high for the film at 500 nm in comparison with thickness of 200 nm. The influence of the dielectric properties of the porous BFO at different thicknesses is studied using LCRQ meter. Finally, the magnetic behavior of film is compared with MH hysteresis loop and Magnetoresistance (MR) studies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号