首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
  国内免费   3篇
化学工业   11篇
金属工艺   9篇
能源动力   12篇
无线电   1篇
一般工业技术   7篇
冶金工业   1篇
  2021年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
We report on extensive measurements of oxygen reduction activity of Pt and Pt-Co-Mn electrocatalysts using the rotating ring-disk electrode (RRDE) method. The electrocatalysts were prepared by sputtering from Pt or Pt, Co and Mn targets onto 3M's nano-structured thin film support (NSTF) structures. The area specific activity of Pt/NSTF, measured in 0.1 M HClO4 and at room temperature, is similar to that of bulk Pt. The area specific measurements show a 20 mV reduction in the Pt-Co-Mn/NSTF overpotential compared to Pt/NSTF. The corresponding kinetic gain in the area specific activity of the ternary alloy is about a factor of two. This ORR enhancement factor observed in the ternary Pt-Co-Mn/NSTF by RRDE measurements is similar to the results obtained in 50 cm2 H2/air fuel cells.  相似文献   
2.
Nano-structured arrays are engineered to meet the requirements of a variety of applications such as microfilters, sensors, and structural interface due to their unique mechanical characteristics, which cannot be achieved by conventional solid materials. However, it is hard to evaluate the elastic properties of nano-structured arrays owing to the discrete structure, sample size, and availability of suitable techniques. To facilitate this, we develop an advanced three-dimensional microscale vibration testing process. In the test, a specially designed three-dimensional microspecimen with tuned mass is excited by a piezoelectric actuator, and the resonance frequencies are detected by a laser device successfully. The anisotropic elastic moduli of nano-structured array composed of helical nano-springs are identified from a single spectrum. This array shows so strong characteristic anisotropy that the solid one hardly can attain. The microscale testing technique can be extended to other materials and microstructures.  相似文献   
3.
Anode-supported planar solid oxide fuel cells (SOFCs) with an active area of 81 cm2 (9 cm × 9 cm) and nano-structured La0.6Sr0.4Co0.2Fe0.8O3−δ + Y2O3 stabilized ZrO2 (LSCF + YSZ) composite cathodes are successfully fabricated by tape casting, screen printing, co-firing and solution impregnation, and tested using H2 fuel and air oxidant at various flow rates. Maximum power densities of 437 and 473 mW cm−2 are achieved at 750 °C by loading 0.6 and 1.3 mg cm−2 of LSCF in the composite cathodes, respectively. The gas flow rates, particularly the air, have a significant effect on the cell performance. Cell performance degradation with time is also observed, which is considered to be associated with the growth and coalescence of the nanosized LSCF particles in the composite cathode. The use of the LSCF cathode in combination with YSZ electrolyte without a Gd-doped CeO2 (GDC) buffer layer is proved to be applicable in large cells, even though the thermal stability of the nanosized LSCF needs to be further improved.  相似文献   
4.
Palladium (Pd) is an attractive cathode catalyst component for solid oxide fuel cells (SOFCs) that has high tendency to agglomerate during operation at around 800 °C. This work shows that such agglomeration can be inhibited by alloying Co into Pd. PdO, Pd0.95Co0.05O, Pd0.90Co0.10O, and Pd0.80Co0.20O were synthesized and characterized. Powder X-ray diffraction patterns at 750 and 900 °C confirmed that PdO decomposition to Pd which normally occurred at 840 °C was suppressed for Co containing Pd alloys while thermal gravimetric analyses indicated improved redox reversibility of PdO ? Pd conversion for alloys during the thermal cycling between 600 and 900 °C. Scanning electron microscopy images supported these arguments. Pd0.90Co0.10+yttria stabilized zirconia (YSZ) electrode (i.e., 10 mol % Co containing PdO-impregnated YSZ electrode) displayed the highest oxygen reduction reaction (ORR) performance and stability. The polarization resistance for ORR on Pd0.90Co0.10+YSZ cathode is only 0.088 Ω cm2 at 750 °C. During polarization test at 750 °C, Pd0.90Co0.10+YSZ cathode showed stable performance for 30 h while the performance of Pd+YSZ cathode degraded after 10 h.  相似文献   
5.
There exist strong interests of developing nano-grained steels because of the outstanding properties including high strength/weight ratio, wear resistance, excellent toughness, and favorable cellular activity. This article reviews the main fabrication process and microstructural control of nano-structured steels over the last decades. Severe plastic deformation is considered as an effective route of obtaining the nano-grained microstructures. The process of cold-rolling and annealing of martensitic steel is a viable method to obtain bulk nano-structured low carbon steel, while the final thickness of the cold-rolling plate is limited. According to the theoretical results of the thermal simulation studies, a novel alloy design combined with the rapid transformation and rolling process is proposed to successfully fabricate nano-grained high strength bulk steel. The refinement mechanisms are expected to be taking advantage of increase in the transformation nucleation sites and inhibiting the grain coarsening. Moreover, corresponding mechanical properties are summarized.  相似文献   
6.
Nano-structured Pd infiltrated and Pd0.95M0.05 (M = Mn, Co, Ce, and Gd) co-infiltrated Y2O3–ZrO2 (YSZ) electrodes are studied as the oxygen electrodes of solid oxide electrolysis cells (SOECs). The infiltrated Pd-YSZ electrodes show good electrocatalytic activity for the oxygen evolution reaction. For example, the electrode polarization resistance (RE) for 2.0 mg cm−2 Pd infiltrated YSZ is 0.36 Ω cm−2 at 800 °C. RE is not significantly affected by co-infiltrating Pd with Mn and Co, but is enhanced by co-infiltration of Ce and Gd. The co-infiltration of low concentrations of metals in particular Co, Ce and Gd significantly enhances the microstructure and performance stability of the Pd-YSZ electrodes. The results demonstrate that the addition of dopants to the Pd in the form of either an alloy (Co) or a separate phase (Ce and Gd) is beneficial to enhance the performance and stability of Pd based oxygen electrodes of SOECs.  相似文献   
7.
Titanium dioxide TiO2 can be used as a photo-anode to give generated electrons to the metal substrate under illumination. The transition metal oxide such as iron oxide Fe2O3 can be used to store electrons generated by the photo-electric conversion function of TiO2 under the illuminated situation while the electrons are discharged from the transition metal oxide to the metal substrate in the dark. In this paper, coatings of nano-sized composite of TiO2 and Fe2O3 were fabricated by the Warm Spray process, in which the feedstock powder is accelerated by a supersonic gas jet with speed above 1.0 km s- 1 and temperature between 800 and 2500 K, and then impacted onto the target substrate continuously to form coatings. The coatings of TiO2 and Fe2O3 nano-composite fabricated by Warm Spray showed no thermal deterioration such as phase transformation and particle growth of the feedstock during the spray process. The coatings fabricated by the Warm Spray had larger photo-current and the electron charge/discharge capacity than that by a conventional HVOF process. In addition, these characteristics were improved by decreasing the primary particle size of TiO2 and Fe2O3.  相似文献   
8.
Bismuth sulfide nanorods and nano-structured flowers were synthesized by hydrothermal reaction of bismuth nitrate pentahydrate and thiourea solutions, containing 1 and 2 ml of 65% HNO3, respectively. By using X-ray diffraction (XRD), selected area electron diffraction (SAED), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM), the products were specified as orthorhombic Bi2S3 in the shapes of nanorods and flower-like clusters of nanorods, with the growth of nanorods in the [001] direction. A diffraction pattern was also simulated, and was in good accordance with the SAED pattern obtained from the experiment.  相似文献   
9.
A bulk nanostructured twinning-induced plasticity (TWIP) steel with high ductility and high strength was fabricated by cryogenic asymmetry-rolling (cryo-ASR) and subsequent recovery treatment. It was found that the cryo-ASRed TWIP steels exhibit simultaneous improvements in the ductility, strength and work hardening. Typical microstructures of the cryo-ASR TWIP steel were characterized by shear bands and intensive mechanical nano-sized twins induced by cryogenic deformation. These mechanical nano-scale twins remain thermally stable during the subsequent recovery treatment. It is believed that the ductility enhancement and high work-hardening ability for the cryo-ASR TWIP steels should be mainly attributed to the high-density pre-existing nano-scale twins.  相似文献   
10.
The LSGM(La0.8Sr0.2Ga0.8Mg0.2O3) electrolyte based intermediate temperature solid oxide fuel cells (ITSOFCs) supported by porous nickel substrates with different permeabilities are prepared by plasma spray technology for performance studies. The cell having a porous nickel substrate with a permeability of 3.4 Darcy, an LSCM(La0.75Sr0.25Cr0.5Mn0.5O3) interlayer on the nickel substrate, a nano-structured LDC(Ce0.55La0.45O2)/Ni anode functional layer, an LDC interlayer, an LSGM/LSCF(La0.58Sr0.4Co0.2Fe0.8O3) cathode interlayer and an LSCF cathode current collector layer shows remarkable electric output power densities such as 1270 mW cm−2 (800 °C), 978 mW cm−2 (750 °C) and 702 mW cm−2 (700 °C) at 0.6 V cell voltage under 335 ml min−1 H2 and 670 ml min−1 air flow rates. SEM, TEM, EDX, AC impedance, voltage and power data with related analyses are presented here to support this high performance. The durability test of the cell with the best power performance shows a degradation rate of about 3% kh−1 at the test conditions of 400 mA cm−2 constant current density and 700 °C. Results demonstrate the success of APS technology for fabricating high performance metal-supported and LSGM based ITSOFCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号