首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   4篇
  国内免费   1篇
电工技术   1篇
综合类   1篇
化学工业   68篇
金属工艺   4篇
机械仪表   17篇
建筑科学   5篇
能源动力   17篇
轻工业   29篇
石油天然气   4篇
无线电   28篇
一般工业技术   72篇
冶金工业   13篇
原子能技术   2篇
自动化技术   20篇
  2023年   5篇
  2022年   8篇
  2021年   7篇
  2020年   6篇
  2019年   5篇
  2018年   8篇
  2017年   11篇
  2016年   10篇
  2015年   7篇
  2014年   10篇
  2013年   16篇
  2012年   6篇
  2011年   24篇
  2010年   21篇
  2009年   20篇
  2008年   30篇
  2007年   17篇
  2006年   6篇
  2005年   19篇
  2004年   13篇
  2003年   7篇
  2002年   6篇
  2001年   10篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1996年   2篇
排序方式: 共有281条查询结果,搜索用时 62 毫秒
1.
Control of self-assembling systems at the micro- and nano-scale provides new opportunities for the engineering of novel materials in a bottom-up fashion. These systems have several challenges associated with control including high-dimensional and stochastic nonlinear dynamics, limited sensors for real-time measurements, limited actuation for control, and kinetic trapping of the system in undesirable configurations. Three main strategies for addressing these challenges are described, which include particle design (active self-assembly), open-loop control, and closed-loop (feedback) control. The strategies are illustrated using a variety of examples such as the design of patchy and Janus particles, the toggling of magnetic fields to induce the crystallization of paramagnetic colloids, and high-throughput crystallization of organic compounds in nanoliter droplets. An outlook of the future research directions and the necessary technological advancements for control of micro- and nano-scale self-assembly is provided.  相似文献   
2.
The paper provides details on the current approach to multi-scale modeling and simulation of advanced materials for structural applications. Examples are given that illustrate the suggested approaches to predicting the behavior and influencing the design of nanostructured materials such as high-performance polymers, composites, and nanotube-reinforced polymers. Primary simulation and measurement methods applicable to multi-scale modeling are outlined. Key challenges including verification and validation are highlighted and discussed.  相似文献   
3.
Are quantum dots ready for in vivo imaging in human subjects?   总被引:2,自引:0,他引:2  
Nanotechnology has the potential to profoundly transform the nature of cancer diagnosis and cancer patient management in the future. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology. QDs are fluorescent semiconductor nanoparticles suitable for multiplexed in vitro and in vivo imaging. Numerous studies on QDs have resulted in major advancements in QD surface modification, coating, biocompatibility, sensitivity, multiplexing, targeting specificity, as well as important findings regarding toxicity and applicability. For in vitro applications, QDs can be used in place of traditional organic fluorescent dyes in virtually any system, outperforming organic dyes in the majority of cases. In vivo targeted tumor imaging with biocompatible QDs has recently become possible in mouse models. With new advances in QD technology such as bioluminescence resonance energy transfer, synthesis of smaller size non-Cd based QDs, improved surface coating and conjugation, and multifunctional probes for multimodality imaging, it is likely that human applications of QDs will soon be possible in a clinical setting.  相似文献   
4.
纳米材料技术实用化现状和对策   总被引:2,自引:0,他引:2  
李春忠 《上海化工》2004,29(5):31-33
纳米材料作为纳米技术的重要方面,在化学工业、生物医药、电子电器、航天航空等领域已获得应用。本文基于国内外纳米材料技术的研究进展,结合本单位在纳米材料技术领域取得的成果,分析了纳米材料技术实用化的现状和趋势,提出了纳米材料技术实用化应重视的领域和应解决的关键问题。  相似文献   
5.
简要介绍了AFM的基本原理及操作模式。系统地阐述了AFM在国内外机械领域的发展现状,并进行了展望。  相似文献   
6.
Under water-rich conditions, small amphiphilic and hydrophobic drug molecules self-assemble into supramolecular nanostructures. Thus, substantial modifications in their interaction with cellular structures and the ability to reach intracellular targets could happen. Additionally, drug aggregates could be more toxic than the non-aggregated counterparts, or vice versa. Moreover, since self-aggregation reduces the number of effective “monomeric” molecules that interact with the target, the drug potency could be underestimated. In other cases, the activity could be ascribed to the non-aggregated molecule while it stems from its aggregates. Thus, drug self-assembly could mislead from drug throughput screening assays to advanced preclinical and clinical trials. Finally, aggregates could serve as crystallization nuclei. The impact that this phenomenon has on the biological performance of active compounds, the inconsistent and often controversial nature of the published data and the need for recommendations/guidelines as preamble of more harmonized research protocols to characterize drug self-aggregation were main motivations for this review. First, the key molecular and environmental parameters governing drug self-aggregation, the main drug families for which this phenomenon and the methods used for its characterization are described. Then, promising nanotechnology platforms investigated to prevent/control it towards a more efficient drug development process are briefly discussed.  相似文献   
7.
We introduce a machine learning-based classifier that identifies free radio channels for cognitive radio. The architecture is designed for nanoscale implementation, under nanoscale implementation constraints; we do not describe all physical details but believe future physical implementation to be feasible. The system uses analog computation and consists of cyclostationary feature extraction and a radial basis function network for classification. We describe a model for nanoscale faults in the system, and simulate experimental performance and fault tolerance in recognizing WLAN signals, under different levels of noise and computational errors. The system performs well under expected non-ideal manufacturing and operating conditions.  相似文献   
8.
We introduce staged self-assembly of Wang tiles, where tiles can be added dynamically in sequence and where intermediate constructions can be stored for later mixing. This model and its various constraints and performance measures are motivated by a practical nanofabrication scenario through protein-based bioengineering. Staging allows us to break through the traditional lower bounds in tile self-assembly by encoding the shape in the staging algorithm instead of the tiles. All of our results are based on the practical assumption that only a constant number of glues, and thus only a constant number of tiles, can be engineered. Under this assumption, traditional tile self-assembly cannot even manufacture an n × n square; in contrast, we show how staged assembly in theory enables manufacture of arbitrary shapes in a variety of precise formulations of the model.
Diane L. SouvaineEmail:
  相似文献   
9.
BackgroundZein, a byproduct of corn with renewable resources, unique hydrophobic/hydrophilic character, film/fiber forming and antioxidant properties, is a promising biopolymer for food and nutrition applications. The advantages in properties and efficiencies of nano materials over bulk counterparts are the basis of their unique nature in novel technologies. These advantages also expand their possible applications.Scope and approachAn effort has been made to review on applications of zein/zein-based nano-materials in various branches of food (except food packaging) and nutrition sectors. The effects of various parameters affecting preparations and properties of the nano-materials are also discussed. Nano-encapsulation of foods and nutrients is the major section of this study.Key findings and conclusions(i) the average size of zein nanoparticles reported to be 50–200 nm; (ii) the functions of zein nanomaterials were multiples: a carrier of delivery (food, beverage, and nutrient) systems; a shell or a core of encapsulated systems; or a food ingredient; (iii) zein-based nano-materials have been used for encapsulation of food and nutrient components including lipids; essential oils; fat soluble vitamins; food colorants; flavors; and natural anti-oxidants; (iv) the bioavailability of food and nutrient components such as folic acid, vitamin D3, curcumin, beta-carotene, and resveratrol was improved by employing the zein-nanoparticles in comparison with the bulk counterparts; and (v) bioactive substances with potential applications for food and nutrition sectors were stabilized by zein/zein-based nano-materials.  相似文献   
10.
BackgroundCancer is a group of diseases involving an abnormal growth of cells which tend to proliferate in an uncontrolled fashion and in some cases metastasize to the surrounding tissues (malignancy). Resistance to chemotherapy is typically intrinsic (heterogeneity); however, acquired resistance has also become prevelant due to multiple factors including expression of energy-dependent transporters causing expulsion of internalized drug contents extracellular, insensitivity of tumor cells to drug-induced apoptosis, and induction of drug-detoxifying mechanisms. Curcumin (CUR) has gained widespread recognition due to remarkable anticancer, anti-mutagenic, and anti-metastasizing potentials via downregulation of proliferation of cancer cells and induction of apoptosis. Nevertheless, pharmaceutical significance and therapeutic feasibility of CUR is restricted due to intrinsic physicochemical characteristics including poor aqueous solubility, inadequate biological stability, low bioavailability, and short half-life.Scope and approachOwing to these pharmaceutical limitations of CUR, nanodelivery systems have attained remarkable fascination in the recent years. Therefore, this review was aimed to overview and critically ponders recent developments in improving anticancer viability of CUR.Key findings and conclusionCritical analysis of the literature revealed that nanodelivery systems showed promising efficiency in achieving tumor specific targetability, maximizing internalization of drugs into cancer cells, mitigating tumor metastasis, as well as improving anticancer efficacy of CUR. Moreover, nanocarrier-mediated improved pharmacokinetics, drug accumulation, induced promising cytotoxicity, and enhanced anticancer efficacy by suppressing Egr-1 induction, Mitogen-activated protein kinase (MAPK) pathway, and protein tyrosine kinase (PTK) cascades while mitigating the progression of tumor, have also been discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号