首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   3篇
  国内免费   1篇
综合类   2篇
化学工业   167篇
石油天然气   12篇
无线电   1篇
一般工业技术   4篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   6篇
  2012年   10篇
  2011年   11篇
  2010年   8篇
  2009年   4篇
  2008年   8篇
  2007年   7篇
  2006年   15篇
  2005年   10篇
  2004年   6篇
  2003年   13篇
  2002年   9篇
  2001年   12篇
  2000年   14篇
  1999年   10篇
  1998年   6篇
  1997年   8篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有186条查询结果,搜索用时 31 毫秒
1.
Four cocatalysts, referred to as ethylaluminoxanes, were synthesized by the reaction between triethylaluminium (AIEt3) and water under various molar ratios of H2O/Al at ?78°C. Aluminoxanes were used as cocatalysts for a MgCl2‐supported Ziegler–Natta catalyst for propylene polymerization at temperatures ranging from 70 to 100°C. When the polymerization was activated by AlEt3, the activity as well as the molecular weight and isotacticity of the resulting polymer gradually dropped as the temperature varied from 70 to 100°C. When ethylaluminoxane was employed as the cocatalyst, good activity and high molecular weight and isotacticity were obtained at 100°C. Furthermore, when the cocatalyst varied from AlEt3 to ethylaluminoxane, the atactic fraction and polymer fraction with moderate isotacticity decreased and the high isotactic fraction slightly increased, which indicated that the variation of the cocatalyst significantly affects the isospecificity of active sites. It was suggested that the reactivity of the Al‐Et group and the size of the cocatalyst were correlated to the performance of the Ziegler–Natta catalyst at different temperatures. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1978–1982, 2006  相似文献   
2.
Liquid propylene was polymerized in a 5‐L autoclave batch reactor using a commercially available TiCl4/MgCl2/Al(ethyl)3/DCPDMS Ziegler–Natta catalyst, with a phthalate ester as internal electron donor. The powders from these polymerizations were characterized using laser diffraction particle size distribution (PSD) analysis, scanning electron microscopy (SEM), and bulk density measurements. These characteristics were analyzed as a function of the process conditions, including hydrogen and monomer concentration, polymerization temperature, and the prepolymerization method. It was shown that polymerization temperature influences the powder morphology to a large extent. At low temperatures, high‐density particles were obtained, showing regular shaped particle surfaces and low porosities. With increasing temperature, the morphology gradually was transferred into a more open structure, with irregular surfaces and poor replication of the shape of the catalyst particle. When using a prepolymerization step at a relatively low temperature, the morphology obtained was determined by this prepolymerization step and was independent from conditions in main polymerization. The morphology obtained was the same as that observed after a full polymerization at temperature. Even when using a short polymerization at an increasing temperature, the morphology was strongly influenced by the initial conditions. The effect of variation in hydrogen concentration supported the conclusion that the initial polymerization rate determines the powder morphology. In the absence of hydrogen, high bulk densities, and regularly shaped particles were obtained, even at high temperatures. With increasing hydrogen concentration, the reaction rates increased rapidly, and with that changed the morphology. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1421–1435, 2003  相似文献   
3.
Ti‐based Ziegler–Natta catalysts supported on MgCl2 doped with AlCl3 were prepared by the reaction of MgCl2/AlCl3–ethanol adduct with TiCl4. No AlCl3 crystallites were found in the AlCl3‐doped catalysts by WAXD analysis, suggesting that AlCl3/MgCl2 solid solution was formed. The effect of doping on the catalyst performance in ethylene polymerization was investigated. The results showed that the catalysts based on AlCl3‐doped MgCl2 support exhibited a slightly higher activity than did the MgCl2‐supported catalyst and the molecular weight distribution (MWD) of polyethylene (PE) markedly increased (from 10.8 to 47.9) with the increase of AlCl3 content in catalysts. The changes in catalyst's active center distribution were studied based on nonlinear fitting of the polymer GPC curves by multiple Flory functions. It was found that increase of types of active centers by introducing AlCl3 into the support should be responsible for the broadening of MWD of PE. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1768–1772, 2006  相似文献   
4.
酯对钼系Ziegler-Natta催化剂引发丁二烯聚合的影响   总被引:1,自引:0,他引:1  
以MoCl_4(Mo)为主催化剂,甲苯氧基二异丁基铝(Al)为助催化剂,在加氢汽油溶剂中,研究了8种酯对丁二烯(Bd)聚合的影响。结果表明,凡是能够溶解在酯中的Mo与Al所组成的二元催化体系,大多能很好地引发Bd聚合,并有较高的催化活性。酯的主要作用是增加Mo在加氢汽油中的溶解性,对聚合物的分子量影响不大,对微观结构几乎无影响。  相似文献   
5.
The effects of alkylaluminum and polymerization temperature on propylene polymerization without an external donor in the use of a TiCl4–MgCl2–diether(BMMF) catalyst were investigated. The results indicated that with increasing polymerization temperature the concentrations of [mmmm] of heptane‐insoluble poly(propylene) (PP) fraction increased. Crystallization analysis fractionation (CRYSTAF) results showed the fractions of different crystallization temperatures were changed according to various polymerization temperatures. The activity with Et3Al as cocatalyst at 100°C was much lower than that at 70°C. However, the activity with i‐Bu3Al at 100°C was as high as that at 70°C. The fraction of high‐crystallization temperature of PPs obtained with i‐Bu3Al increased with increasing polymerization temperature, which was opposite to that with Et3Al, thus implying that the copolymerization of propylene with the monomer arising from Et3Al led to the lower crystallization ability of PPs obtained with Et3Al. The terminal groups of PP suggested that the chain‐transfer reaction by β‐H abstraction was the main chain‐transfer reaction at 120°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3980–3986, 2003  相似文献   
6.
In this article, polymerization of 1-hexene with FeCl3-doped Mg(OET)2/TiCl4/electron donor (ED) catalytic system is presented. For this purpose, first a number of TiCl4 catalysts supported on Mg(OEt)2 and Fe-doped Mg(OEt)2 supports were prepared with ethylbenzoate or dibutylphthalate as the internal EDs. After successive catalysts synthesis, they were employed in 1-hexene polymerization using cyclohexyl methyl dimethoxysilane as external ED as well as without it. The catalysts activity and molecular weight distribution (MWD) of poly 1-hexenes (PHs) were influenced strongly by both FeCl3 doping and donor presence so that a remarkable increase in the catalyst activity was seen in doped catalysts. Deconvolution of MWD curves revealed that increase in the type of active centers by introducing FeCl3 into the support should be responsible for the broadening of MWD of PHs. 13CNMR analysis indicated that while isotacticity does not change considerably by Fe doping, EDs increase its amount as high as 8–21%. Second, the stereoselective behavior of active Ti species in doped and undoped catalysts was fully explored by molecular modeling using density functional theory (DFT) method. Finally, with the aid of rheological measurements, the processability of polymers were evaluated and then the gel permeation chromatography (GPC) results were approved through the values obtained from model fitting as well as changes in moduli crossover modulus.  相似文献   
7.
This study reports a novel one‐step method to synthesize a new spherical support for Ziegler‐Natta catalyst under moderate condition. The support is obtained from a dispersion system where the particle stabilizer polyvinylpyrrolidone plays a main role to stabilize the spherical particles. The new chemical of the support is CH3CH2OMgOCH(CH2Cl)2, which is first reported here, has been approved by newly filed patents and also confirmed by solution NMR, solid state NMR, pyrolysis‐gas chromatography‐mass spectrometry (Py‐GC‐MS), and ICP‐MS. The support and catalyst particles have uniform distributions. The catalyst prepared from this support has been evaluated with high activity. The polypropylene obtained has high isotacticity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41014.  相似文献   
8.
Bi-supported Ziegler–Natta catalysts (TiCl4/MCM-41/MgCl2 (ethoxide type)) were synthesized to improve the morphology and the properties of polyethylene. The morphology control is a crucial issue in polymerization process, while tailoring the properties of polymers is needed for specific applications. The catalysts were synthesized in different ratios of two supports with impregnation method. The polymerization process was carried out in atmospheric slurry reactor. The catalysts were characterized with scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM–EDX), inductively coupled plasma, Fourier transform infrared spectrometry (FTIR), and Brunauer-Emmett-Teller (BET) methods. The polymers were analyzed with scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry, FTIR, and tensile-strength analyses. Ubbelohde viscometer and frequency sweep measurements showed that the synthesized polymers are ultra-high-molecular-weight polyethylene. Mechanical properties of polymers showed higher Young's modulus in samples containing MCM-41, having higher thermal stability supported by TGA analysis. SEM images of bi-supported catalyst showed a controlled spherical morphology with uniform size distribution. SEM analysis support that the polymers replicate their morphology from catalyst, improving their morphology comparing to MgCl2-supported catalyst. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48553.  相似文献   
9.
催化合金技术代表了Ziegler-Natta催化剂催化聚丙烯的先进技术和工艺。详细描述了催化合金和催化合金技术,介绍了催化合金的性能、应用和发展前景等情况。  相似文献   
10.
Two novel magnesium chloride supported, vanadium‐based Ziegler–Natta catalysts with 9,9‐bis(methoxymethyl)fluorene and di‐i‐butyl phthalate as internal donors were prepared and used in the copolymerization of ethylene and propylene. The catalytic behaviors of these catalysts were investigated and compared with those of traditional magnesium chloride supported, vanadium‐based catalysts without internal donors. Differential scanning calorimetry, gel permeation chromatography, and 13C‐NMR spectroscopy analysis were performed to characterize the melting temperatures, molecular weights, and molecular weight distributions as well as structures and compositions of the products. The copolymerization kinetic results indicated that the novel catalyst with 9,9‐bis(methoxymethyl)fluorene as an internal donor had the highest catalytic activity and optimal kinetic behavior in ethylene–propylene copolymerization with an ethylene/propylene molar ratio of 44/56. Low‐crystallinity and high‐molecular‐weight copolymers were obtained with these novel magnesium chloride supported, vanadium‐based catalysts. The reactivity ratio data indicated that the catalytic systems had a tendency to produce random ethylene–propylene copolymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号