首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学工业   2篇
能源动力   2篇
  2022年   1篇
  2018年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
在分析平板状固体氧化物燃料电池电化学特性的基础上,建立了Simlink仿真模型,探讨了工作温度和燃料中水蒸气含量对燃料电池理想电势和有效电势的影响。仿真结果表明,低电流密度下,温度的升高会导致有效电势的降低;高电流密度下,有效电势会随着温度升高而增加。水蒸气含量越低,燃料电池的理想电势和有效电势越高。  相似文献   
2.
A composite catalyst of nano-grade IrO2/TiO2 powder is synthesized by Adams’ fusion method for reducing overvoltage of solid polymer electrolyte (SPE) cell and cost-down of noble metal catalyst, simultaneously. The IrO2/TiO2 catalysts, which has a porous composite nanostructure, are prepared according to molar ratio of Ir and Ti element with a specific surface area of 34.1–55.3 m2 g?1. It is found that crystal structure of TiO2 is more dominated by the rutile phase than by Anatase. For a SPE system, total catalyst loading of anode which made of TiO2 and IrO2 is prepared as low as 0.77 mg cm?2 or less, in which the loading amount of the IrO2 only is set to 0.6 mg cm?2 or less. The anode catalyst layer of about 10 ? thickness is coated on the membrane (Nafion 212) for the membrane electrode assembly (MEA) by the decal method. The strong adhesion between the catalyst electrode the membrane is observed by Scanning electron microscopy (SEM). Linear sweep voltammetry (LSV) results shows that the nano-composite IrO2/TiO2 catalysts has better oxygen evolution reaction (OER) than that of the synthesis IrO2 only. Finally, the IrO2/TiO2 catalysts is applied as anode electrode for SPE cells and it is observed that in spite of the lower loading amount of the IrO2 less than 0.5 mg cm?2, working voltage of 1.68 V is observed at a current density of 1 A cm?2 and operating temperature of 80 °C.  相似文献   
3.
HHO gas, which is obtained by the electrolysis of water, is a promising alternative fuel. This paper presents a review of important features and techniques used for producing HHO gas. Various aspects of the thermodynamics and chemical kinetics of electrolysis reactions are discussed. Design and operating parameters for improving the gas production rate are identified. Widely different hypotheses regarding the structure and composition of HHO gas are compared in depth. The state of the art on the use of HHO gas in Internal Combustion (IC) engines is presented in the latter part of the paper. It is seen that the introduction of HHO gas increases engine torque, power and thermal efficiency, while simultaneously reducing the formation of NOx, CO, HC and CO2. The major challenges in using HHO gas in engines are identified as system complexity, safety, cost and efficiency of electrolysis.  相似文献   
4.
Laboratory scale electrolysis experiments were conducted to investigate the electrowinning of aluminium using hydrogen diffusion anodes. A potassium-based electrolyte (KF–AlF3–Al2O3), porous nickel alloy anode and molybdenum disk cathode were used in experiments at 750 °C. Hydrogen gas was supplied to the anode/electrolyte interface through the porous anode. Experiments were conducted in potentiostatic, galvanostatic and galvanodynamic modes. There was a measurable depolarisation of the anode potential and also anode reaction of hydrogen and oxygen ions in the bath to form water vapour was confirmed by the water vapour condensate found at the electrolysis exit gas pipe. Metallic aluminium was found on the spent cathode. The experiments conducted in the galvanodynamic mode suggested that the rate limiter for hydrogen oxidation was the availability of surface hydrogen at the anode/electrolyte interface. The anode surface corroded during electrolysis and impurities were found both in the molten bath and on the cathode.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号