首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学工业   2篇
  2012年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Telechelic polymers by living and controlled/living polymerization methods   总被引:1,自引:0,他引:1  
Telechelic polymers, defined as macromolecules that contain two reactive end groups, are used as cross-linkers, chain extenders, and important building blocks for various macromolecular structures, including block and graft copolymers, star, hyperbranched or dendritic polymers. This review article describes the general techniques for the preparation of telechelic polymers by living and controlled/living polymerization methods; namely atom transfer radical polymerization, nitroxide mediated radical polymerization, reversible addition-fragmentation chain transfer polymerization, iniferters, iodine transfer polymerization, cobalt mediated radical polymerization, organotellurium-, organostibine-, organobismuthine-mediated living radical polymerization, living anionic polymerization, living cationic polymerization, and ring opening metathesis polymerization. The efficient click reactions for the synthesis of telechelic polymers are also presented.  相似文献   
2.
Reversible addition fragmentation chain transfer (RAFT) polymerization has made a huge impact in macromolecular design. The first block copolymers were described early on, followed by star polymers and then graft polymers. In the last five years, the types of architectures available have become more and more complex. Star and graft polymers now have block structures within their branches, or a range of different branches can be found growing from one core or backbone. Even the synthesis of hyperbranched polymers can be positively influenced by RAFT polymerization, allowing end group control or control over the branching density. The creative combination of RAFT polymerization with other polymerization techniques, such as ATRP or ring-opening polymerization, has extended the array of available architectures. In addition, dendrimers were incorporated either as star core or endfunctionalities. A range of synthetic chemistry pathways have been utilized and combined with polymer chemistry, pathways such as ‘click chemistry’. These combinations have allowed the creation of novel structures. RAFT processes have been combined with natural polymers and other naturally occurring building blocks, including carbohydrates, polysaccharides, cyclodextrins, proteins and peptides. The result from the intertwining of natural and synthetic materials has resulted in the formation of hybrid biopolymers. Following these developments over the last few years, it is remarkable to see that RAFT polymerization has grown from a lab curiosity to a polymerization tool that is now been used with confidence in material design. Most of the described synthetic procedures in the literature in recent years, which incorporate RAFT polymerization, have been undertaken in order to design advanced materials.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号