首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
化学工业   4篇
能源动力   1篇
  2018年   1篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
A study of radiation grafted polymers on the conductivity and performance of alkaline anion exchange membrane fuel cells (AAEMFCs) is reported. The aminated poly (LDPE-g-VBC), poly (HDPE-g-VBC) and poly (ETFE-g-VBC) membranes were produced by the using the radiation grafting technique. Differences in grafting behaviour are observed between the studied materials caused by differences in the base polymer film properties as molar mass, crystallinity, orientation or grafting technique used. In plane conductivities increased with Degree of Grafting DoG. At a DoG of 68% the LDPE-g-VBC membrane achieved an in-plane ionic conductivity between 0.18 and 0.32 S cm−1 in the temperature range 20–80 °C. Measured through plane conductivities were lower than that of the in plane ones for all studied membranes. Membranes with the highest degree of swelling showed the highest through plane conductivity of 0.07–0.11 S cm−1. The membrane specific resistance (per MEA cm2) of most of the produced membranes was in the range of 0.09–0.18 Ω cm2. While membrane conductivity and hence IR loss is a crucial factor in fuel cell performance, membrane water permeability is a similarly crucial key for optimised water transport to the cathode. The main source of performance loss of AAEMFCs is believed to be restricted mass transport of water to the cathode reaction sites. The highly humidified anode stream along with large amount of water produced at the anode at high current densities could lead to flooding if water is not removed quickly to the cathode via the membrane (back diffusion) where it is consumed.  相似文献   
2.
PolyHIPEs: Recent advances in emulsion-templated porous polymers   总被引:1,自引:0,他引:1  
Porous polymers with well-defined porosities and high specific surface areas in the form of monoliths, films, and beads are being used in a wide range of applications (reaction supports, separation membranes, tissue engineering scaffolds, controlled release matrices, responsive and smart materials) and are being used as templates for porous ceramics and porous carbons. The surge in the research and development of porous polymer systems is a rather recent phenomenon. PolyHIPEs are porous emulsion-templated polymers synthesized within high internal phase emulsions (HIPEs). HIPEs are highly viscous, paste-like emulsions in which the major, “internal” phase, usually defined as constituting more than 74% of the volume, is dispersed within the continuous, minor, “external” phase. This review focuses upon the recent advances in polyHIPEs involving innovations in polymer chemistry, macromolecular structure, multiphase architecture, surface functionalization, and nanoparticle stabilization. The effects of these innovations upon the natures of the resulting polyHIPE-based materials (including bicontinuous polymers, nanocomposites, hybrids, porous ceramics, and porous carbons) and upon the applications involving polyHIPEs are discussed. The advances in polyHIPEs described in this review are now being used to generate new families of porous materials with novel porous architectures and unique properties.  相似文献   
3.
Telechelic polymers by living and controlled/living polymerization methods   总被引:1,自引:0,他引:1  
Telechelic polymers, defined as macromolecules that contain two reactive end groups, are used as cross-linkers, chain extenders, and important building blocks for various macromolecular structures, including block and graft copolymers, star, hyperbranched or dendritic polymers. This review article describes the general techniques for the preparation of telechelic polymers by living and controlled/living polymerization methods; namely atom transfer radical polymerization, nitroxide mediated radical polymerization, reversible addition-fragmentation chain transfer polymerization, iniferters, iodine transfer polymerization, cobalt mediated radical polymerization, organotellurium-, organostibine-, organobismuthine-mediated living radical polymerization, living anionic polymerization, living cationic polymerization, and ring opening metathesis polymerization. The efficient click reactions for the synthesis of telechelic polymers are also presented.  相似文献   
4.
Reversible addition fragmentation chain transfer (RAFT) polymerization has made a huge impact in macromolecular design. The first block copolymers were described early on, followed by star polymers and then graft polymers. In the last five years, the types of architectures available have become more and more complex. Star and graft polymers now have block structures within their branches, or a range of different branches can be found growing from one core or backbone. Even the synthesis of hyperbranched polymers can be positively influenced by RAFT polymerization, allowing end group control or control over the branching density. The creative combination of RAFT polymerization with other polymerization techniques, such as ATRP or ring-opening polymerization, has extended the array of available architectures. In addition, dendrimers were incorporated either as star core or endfunctionalities. A range of synthetic chemistry pathways have been utilized and combined with polymer chemistry, pathways such as ‘click chemistry’. These combinations have allowed the creation of novel structures. RAFT processes have been combined with natural polymers and other naturally occurring building blocks, including carbohydrates, polysaccharides, cyclodextrins, proteins and peptides. The result from the intertwining of natural and synthetic materials has resulted in the formation of hybrid biopolymers. Following these developments over the last few years, it is remarkable to see that RAFT polymerization has grown from a lab curiosity to a polymerization tool that is now been used with confidence in material design. Most of the described synthetic procedures in the literature in recent years, which incorporate RAFT polymerization, have been undertaken in order to design advanced materials.  相似文献   
5.
Polystyrene‐based anion exchange membranes (AEMs) have been fabricated using in situ click chemistry between azide and alkyne moieties introduced as side groups on functionalized polymers. The membrane properties such as water uptake, swelling ratio and conductivity were affected by the number of cations and the degree of crosslinking. The membranes containing a larger amount of trimethylammonium cationic groups (i.e. higher ion exchange capacity) showed high hydroxide conductivity when immersed in KOH solution, exhibiting a peak in conductivity (156 mS cm?1) in 3 mol L–1 KOH solution. A higher degree of crosslinking tended to decrease conductivity. These membranes demonstrated relatively good stability in 8 mol L–1 KOH at 60 °C and maintained 33%–62% of initial conductivity after 49 days with most of the loss in conductivity occurring in early stages of the test. In an alkaline fuel cell, the areal specific resistance was constant indicating good stability of the membranes. The observed peak power density (157 mW cm?2) was comparable to that of other AEM‐based fuel cells reported. © 2018 Society of Chemical Industry  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号