首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   0篇
综合类   1篇
化学工业   59篇
金属工艺   1篇
能源动力   1篇
无线电   10篇
一般工业技术   26篇
自动化技术   1篇
  2024年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   4篇
  2013年   8篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   8篇
  2006年   7篇
  2005年   12篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
1.
ABSTRACT

The thermoplastic and low dielectric constants polyimides were introduced. The polyimides were prepared by pyromellitic dianhydride (PMDA) or 4,4?-(4,4?-Isopropylidenediphenoxy)diphthalic anhydride (BPADA) as anhydride monomer and 4,4?-oxydianiline (ODA) or 2,2-bis(4-(4-aminephenoxy)phenyl)propane (BAPP) as amine monomer. The polyimides were well characterized by FT-IR, thermogravimetric analysis, dynamic thermomechanical analysis, dielectric measurement, and tensile test. The dielectric constants were 2.32–2.95 compared with 3.10 of ODA-PMDA polyimide, while partly polyimides were thermoplastic. The results indicated anhydride monomers, containing lateral methyl groups, made polyimides become thermoplastic. The results of molecular simulations via Materials Studio also proved this conclusion.  相似文献   
2.
3.
Z.J YuE.T Kang  K.G Neoh 《Polymer》2002,43(15):4137-4146
Argon plasma-pretreated polyimide (PI, Kapton® HN) films were subjected to UV-induced surface graft copolymerization with N,N′-(dimethylamino)ethyl methacrylate (DMAEMA) and 2-(trimethylammonium)ethyl methacrylate chloride (TMMAC). The DMAEMA graft-copolymerized PI (DMAEMA-g-PI) surfaces were also quaternized and amino-functionalized with 3-bromopropylamine hydrobromide (the Q-DMAEMA-g-PI surfaces). The surface composition and the degree of quaternization of the graft-modified PI films were determined by X-ray photoelectron spectroscopy. The DMAEMA-g-PI, Q-DMAEMA-g-PI and TMMAC graft-copolymerized PI (TMMAC-g-PI) surfaces can be activated directly by PdCl2, in the absence of prior sensitization by SnCl2 (the ‘Sn-free’ activation process), for the subsequent electroless plating of copper. A shorter induction time for the electroless deposition of copper was found for the palladium-activated Q-DMAEMA-g-PI and TMMAC-g-PI surfaces than for the palladium-activated DMAEMA-g-PI surface. The T-peel adhesion strength of the electrolessly deposited copper with the Q-DMAEMA-g-PI surface was enhanced to above 6 N/cm, in comparison to only about 4 N/cm for the DMAEMA-g-PI surface, about 2.5 N/cm for the TMMAC-g-PI surface, or about 0.5 N/cm for the PI surface with argon plasma treatment alone.  相似文献   
4.
High-temperature polyimide nanofoams for microelectronic applications   总被引:1,自引:0,他引:1  
Foamed polyimides have been developed in order to obtain thin film dielectric layers with very low dielectric constants for use in microelectronic devices. In these systems the pore sizes are in the nanometer range, thus, the term ‘nanofoam’. The polyimide foams are prepared from block copolymers consisting of thermally stable and thermally labile blocks, the latter being the dispersed phase. Foam formation is effected by thermolysis of the thermally labile block, leaving pores of the size and shape corresponding to the initial copolymer morphology. Nanofoams prepared from a number of polyimides as matrix materials were investigated as well as from a number of thermally labile polymers. The foams were characterized by a variety of experiments including TEM, SAXS, WAXD, DMTA, density measurements, refractive index measurements and dielectric constant measurements. Thin film foams, with high thermal stability and low dielectric constants approaching 2.0, can be prepared using the copolymer/nanofoam approach.  相似文献   
5.
Two tetracarboxylic dianhydrides with polyalicyclic structure, bicyclo[2.2.2]octane-2-endo, 3-endo, 5-exo, 6-exo-2,3:5,6-dianhydride (5a) and the all-exo isomer (5b), were synthesized in six steps using phthalic acid as a starting material. The dianhydrides were polymerized at 85–105°C in well-purified DMAc with aromatic diamines which were purified by two recrystallizations and then sublimation. The polyimides formed flexible and tough films, and were soluble in aprotic polar solvents such as DMAc. The 5%-weight loss temperatures were over 450°C. The polyimides possessed glass-transition temperatures in the range from 211 to 385°C. The polyimides films had a tensile modulus range of 1.5–2.6 GPa, a tensile strength range of 52–96 MPa, and an elongation range at break of 3–11%. The polyimide films showed cutoffs at wavelengths shorter than 320 nm and were entirely colorless. The colorlessness of the polyimide films was maintained up to 200°C when heated in air and to 400°C in a N2 atmosphere.  相似文献   
6.
New triphenylamine containing azomethine diimides and two kinds of poly(azomethine imide)s, i.e., linear and branched were synthesized. These compounds were prepared from two diamines, that is, N,N′-bis(4-amino-2,3,5,6-tetramethylphenyl)phtalene-1,2,4,5-dicarboximide (DAPhDI), N,N′-bis(5-aminonaphtalen)naphthalene-1,4,5,8-dicarboxyimide (DANDI-2) and 4-formyltriphenylamine, 4,4′-diformyltriphenylamine and 4,4′,4″-triformyltriphenylamine. The structures of the compounds were characterized by means of FTIR, 1H NMR spectroscopy and elemental analysis; the results show an agreement with the proposed structure. Thermal properties of prepared azomethine diimides and polymers were evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Obtained compounds exhibited high thermal stability with 5% weight-loss temperatures above 390 °C. Azomethine diimides exhibited glass-forming properties with high glass-transition temperatures 216 and 308 °C. Optical properties of the prepared compounds were investigated by UV–vis and photoluminescence (PL) measurements. All compounds emitted blue light in NMP solution and in solid state as blend with PMMA. The electrochemical properties, that is, orbital energies and resulting energy gap were estimated based on cyclic voltammetry (CV). All synthesized material showed reversible reduction process, furthermore AzPhDI and AzNDI showed partially reversible oxidation process. Electrochemical band gap was found in the range 1.23–1.70 eV. Low molecular weight model compounds were tested as bipolar host materials in blue phosphorescent organic light emitting diodes (OLEDs). The devices exhibited turn-on voltages of about 5.5 V and maximum brightness of 40–220 cd/m2.  相似文献   
7.
A series of aromatic polyimides with pendent triphenylamine group were synthesized from equimolar mixtures of 4,4′-oxydianiline (ODA) and 4-(3,5-diaminobenzamido)triphenylamine (4), 4-(3,5-diaminobenzamido)-4′,4″-di-tert-butyltriphenylamine (t-Bu-4) or 4-(3,5-diaminobenzamido)-4′,4″-dimethoxytriphenylamine (MeO-4) with two aromatic tetracarboxylic dianhydrides (DSDA or 6FDA) via a conventional two-step procedure that included a ring-opening polyaddition to give poly(amic acid)s, followed by chemical imidization. These polyimides exhibited good solubility in polar organic solvents and could be solution-cast into flexible and strong films. They showed excellent thermal stability, with Tg values in the range of 284–309 °C. The polyimides derived from diamines t-Bu-4 and MeO-4 exhibited reversible electrochemical oxidation, accompanied by strong color changes with high contrast ratio and electrochromic stability. For the polyimides derived from diamine 4, the coupling reaction between the triphenylamine radical cations occurred during the oxidative process forming a tetraphenylbenzidine structure, which resulted in an additional oxidation state and color change together with enhanced near-IR absorption at fully oxidized state.  相似文献   
8.
Composite polymer gelled membranes have been prepared an electrospinning technique. Electrospinning of polymer fibers or electrospraying of particles is typically accomplished by applying a strong electric field (ca. 1–25 kV cm−1) to a polymer solution or slurry of solids in an appropriate solvent. The fibers are collected as a mat (membrane) on a grounded target such as Al, Cu, Ni, etc. Typical membranes (mats) consist of nanometer size fibers and have porosities of 65–85%. In the present paper, we describe the fabrication of electrospun membranes for use as gelled electrolytes in Li and Li-ion batteries. The electrospun polymer membranes used in this work are based on the polyimides (PIs) Matrimid and Ultem 1000. Pure PI membranes have been prepared, and blends of Matrimid and Ultem with PVdF-HFP and PAN have been studied in 250 mAh and 7 Ah Li-ion cells. Fully imidized polyimides such as Matrimid and Ultem 1000 do not form gels, and are used as a host matrix of high mechanical strength to immobilize the gelling constituents PVdF or PAN.  相似文献   
9.
Aqueous polymer dispersions comprising of poly(styrene-co-maleimide) (SMI) or poly(octadecene-co-maleimide) (OMI) nanoparticles were synthesized by thermal imidization of the corresponding maleic anhydride copolymer precursors with ammonia using an organic solvent free process. Different reaction parameters such as temperature, time, agitation speed and stirrer geometry, and molar ratio of ammonia-to-anhydride were investigated in order to find optimal conditions. The obtained copolymer nanoparticles exhibited glass transition temperatures (Tg's) between 140 and 170 °C with particle sizes ranging from 50 to 230 nm. The compositional analysis was conducted by recording 1H NMR and ATR-FTIR spectra. In addition, SMI dispersions were successfully spray dried and analyzed by SEM. Finally, the polymer dispersion's utility as auxiliary organic pigment in paper coating formulations was evaluated.  相似文献   
10.
随着PCB对高密度和高速率传导的要求越来越高,光电印制电路板(EOPCB)作为PCB的新一代产业已成为历史发展的必然。无论从材料的结构、性能,还是材料自身的成本和可加工性,聚合物光学材料都显示出了比无机材料更加优越的应用前景。对聚合物光波导材料的研究主要集中在提高其热及化学稳定性和降低材料的吸收损耗等方面。本文首先对光电印制电路板进行了简要概述,接着对聚合物光波导的分类、特点、材料、主要性能及提高方法分别作了比较详细介绍,然后对几种常用的聚合物光波导材料的单体及合成作了进一步阐述,最后对聚合物光波导加工成型工艺和相关性能检测方法进行了详尽阐述。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号