首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学工业   2篇
  2011年   1篇
  2009年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
2.
Poly(l-lactide) (PLLA) nanoparticles loaded with retinyl palmitate (RP) were successfully prepared by rapid expansion of a supercritical carbon dioxide (CO2) solution into an aqueous receiving solution containing a stabilizing agent (RESOLV). Three stabilizing agents, Pluronic F127, Pluronic F68, and sodium dodecyl sulfate (SDS) have been employed and the Pluronic F127 was found to be more effective for stabilizing PLLA/RP nanoparticles than Pluronic F68 and SDS, as RESOLV into a 0.1 wt% Pluronic F127 solution produced a stable nanosuspension consisting mainly of well-dispersed, individual nanoparticles. The effect of rapid expansion processing conditions (i.e., degree of saturation (S), pre-expansion temperature (Tpre), and concentrations of PLLA and RP (CPLLA, CRP)) on the particle size, form, and RP loading was systematically investigated. It was found that spherical PLLA/RP nanoparticles with an average size range of ∼40-110 nm and RP loadings of 0.9-6.2 wt% were consistently produced by RESOLV. The size of PLLA/RP nanoparticles increased from ∼30-80 to ∼30-160 nm as the solution degree of saturation changed from S < 1 to S > 1, independent of Tpre, CPLLA, and CRP. The entrapment capacity of RP in PLLA nanoparticles was predominantly determined by Tpre and CRP. Increasing the Tpre from 70 to 100 °C and the CRP from 0.05 to 0.15 wt% increased the encapsulated RP content at least twofold. Our results show that the technique with benign supercritical CO2 should be generally applicable to nanoparticle fabrications of other important active ingredients, especially in liquid form, in polymeric nanoparticles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号