首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8418篇
  免费   573篇
  国内免费   416篇
电工技术   193篇
综合类   628篇
化学工业   4100篇
金属工艺   312篇
机械仪表   136篇
建筑科学   710篇
矿业工程   747篇
能源动力   167篇
轻工业   606篇
水利工程   92篇
石油天然气   321篇
武器工业   3篇
无线电   121篇
一般工业技术   876篇
冶金工业   248篇
原子能技术   75篇
自动化技术   72篇
  2024年   17篇
  2023年   108篇
  2022年   268篇
  2021年   283篇
  2020年   222篇
  2019年   198篇
  2018年   198篇
  2017年   329篇
  2016年   329篇
  2015年   290篇
  2014年   368篇
  2013年   421篇
  2012年   537篇
  2011年   615篇
  2010年   443篇
  2009年   402篇
  2008年   406篇
  2007年   504篇
  2006年   430篇
  2005年   386篇
  2004年   375篇
  2003年   310篇
  2002年   284篇
  2001年   227篇
  2000年   229篇
  1999年   215篇
  1998年   164篇
  1997年   144篇
  1996年   113篇
  1995年   123篇
  1994年   84篇
  1993年   74篇
  1992年   77篇
  1991年   49篇
  1990年   41篇
  1989年   18篇
  1988年   25篇
  1987年   30篇
  1986年   20篇
  1985年   13篇
  1984年   8篇
  1983年   10篇
  1982年   5篇
  1981年   9篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1951年   1篇
排序方式: 共有9407条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(23):33223-33231
The effects of pH of the reaction solution and the concentration of phosphoric acid on the crystal growth behavior of LaPO4 crystallites were investigated and the mechanical properties of rare-earth phosphates were compared. As a result, the concentration of phosphoric acid of 10% was beneficial to the crystal growth of LaPO4 nanocrystalline. When the pH value of the reaction solution was 2, the size of LaPO4 crystallites increased gradually with the increasing reaction temperature, and the smallest crystallite size of 43.27 nm was obtained after heat-treatment at 1000 °C. Simultaneously, the activation energy for crystal growth of LaPO4 nanocrystalline was relatively lower (26.82 kJ mol−1). With the decreasing radii of rare-earth ions, the hardness, Young's modulus and fracture toughness of the bulk rare-earth phosphates exhibited a reduced tendency, resulted from the increase of porosity under the same preparation process.  相似文献   
2.
The conversion of food industry by-products to compounds with high added value is nowadays a significant topic, for social, environmental, and economic reasons. In this paper, calcium phosphate-based materials were obtained from black scabbardfish (Aphanopus carbo) bones and grey triggerfish (Balistes capriscus) skin, which are two of the most abundant fish by-products of Madeira Island. Different calcination temperatures between 400 and 1000°C were employed. Materials obtained from calcination of bones of black scabbard fish were composed by homogeneous mixtures of hydroxyapatite (Ca10(PO4)6(OH)2, HAp) and β-tricalcium phosphate (β-Ca3(PO4)2, β-TCP). Because of the high biocompatibility of HAp and the good resorbability of β-TCP, these natural biphasic materials could be very relevant in the field of biomaterials, as bone grafts. The ratio between HAp and β-TCP in the biphasic compound was dependent on the calcination temperature. Differently, the material obtained from skin of grey triggerfish contained HAp as the main phase, together with small amounts of other mineral phases, such as halite and rhenanite, which are known to enhance osteogenesis when used as bone substitutes. In both cases, the increase of calcination temperature led to an increase in the particles size with a consequent decrease in their specific surface area. These results demonstrate that from the fish by-products of the most consumed fishes in Madeira Island it is possible to obtain bioceramic materials with tunable composition and particle morphology, which could be promising materials for the biomedical field.  相似文献   
3.
《Ceramics International》2022,48(15):21502-21514
Based on the good osteogenic and angiogenic effects of silicon and magnesium elements, three types of micro-nano magnesium-containing silicates (MS), including akermanite (Ake, Ca2MgSi2O7), diopside (Dio, CaMgSi2O6) and forsterite (For, Mg2SiO4), were incorporated into calcium phosphate cement (CPC) to improve its osteogenic and angiogenic performances for clinical application. In this present work, the physicochemical properties, osteogenesis and angiogenesis of MS/CPCs (Ake/CPCs, Dio/CPCs and For/CPCs) were investigated systematically and comparatively. The results showed that all MS/CPCs had good biomineralization and significantly stimulated the osteogenic differentiation of mBMSCs and angiogenic differentiation of HUVECs, respectively. Besides, the stimulating effects were related to not only the category of MS, but also the content of MS. The For/CPCs had a good angiogenic property but their initial setting times were beyond 60 min. The Dio/CPCs showed the lowest biological performance among the three groups of MS/CPCs due to the lower ion release (Si and Mg). The Ake was the ideal modifier that could provide CPC with appropriate physicochemical properties, better osteogenesis and angiogenesis. Simultaneously, a higher addition (10 wt%) of akermanite resulted in the best potential to bone regeneration. Taken together, this research provides an effective approach to improve the overall performance of CPC, and 10Ake/CPC is of great promising prospect in bone repair.  相似文献   
4.
《工程爆破》2022,(1):64-69
爆破工程具有周期短、自成完整体系、技术管理严格的特点,但在费用管理上需进一步规范与整顿。本文阐述了工程费用的构成、调整及爆破工程费用的计算方法。  相似文献   
5.
This paper presents the results of ongoing research carried out by the author exploring methods to provide a more robust estimate of rock mass properties specifically for use in tunnel design. Data from various large-scale rock mass failures are introduced, including coal pillars. The damage-initiation,spalling-limit approach is compared to the coal pillar database. New comparisons of estimating the geological strength index(GSI) and relationships to estimate the Hoeke Brown failure criterion parameters, mb, s and a, are presented.  相似文献   
6.
Strain rate is not only an important measure to characterize the deformation property, but also an important parameter to analyze the dynamic mechanical properties of rock materials. In this paper, by using the SHPB test system improved with high temperature device, the dynamic compressive tests of sandstone at seven temperatures in the range of room temperature to 1000 °C and five impact velocities in the range of 11.0–15.0 m/s were conducted. Investigations were carried out on the influences of strain rate on dynamic compressive mechanical behaviors of sandstone. The results of the study indicate that the enhancement effects of strain rates on dynamic compressive strength, peak strain, energy absorption ratio of sandstone under high temperatures still exist. However, the increase ratios of dynamic compressive strength, peak strain, and energy absorption ratio of rock under high temperature compared to room temperature have no obvious strain rate effects. The temperatures at which the strain rates affect dynamic compressive strength and peak strain most, are 800, and 1000 °C, respectively. The temperatures at which the strain rates affect dynamic compressive strength and peak strain weakest, are 1000 °C, and room temperature, respectively. At 200 and 800 °C, the strain rate effect on energy absorption ratio are most significant, while at 1000 °C, it is weakest. There are no obvious strain rate effects on elastic modulus and increase ratio of elastic modulus under high temperatures. According to test results, the relationship formula of strain rate with high temperature and impact load was derived by internalizing fitting parameters. Compared with the strain rate effect at room temperature condition, essential differences have occurred in the strain rate effect of rock material under the influence of high temperature.  相似文献   
7.
Anti-washout and tissue adhesion properties are essential for the clinical application of injectable bone materials. In this study, we prepared calcium phosphate cement (CPC) with anti-washout and tissue adhesion properties and attempted to build covalent bonds between CPC and the amino groups in bone tissue under a self-regulating pH system in the CPC (acidic to basic). The results of push-out tests demonstrated that a significant enhancement (from 6.42 ± 0.76 N to 61.5 ± 4.09 N) in tissue adhesion was obtained with the addition of 6% (w/w) oxidized sodium alginate (OSA) in CPC. The FTIR, XRD, anti-washout test, XPS, pH test, and SEM results suggested that the synergistic effect of OSA-citric acid (CA) led to the formation of a three-dimensional gel network structure in the CPC, and the Schiff base reaction between aldehyde and amino groups induced adhesion between CPC and the bone tissue. Further, the addition of less OSA had no significant negative effect on the hydration properties of CPC. Our work aims to promote the development of injectable bone material in clinical applications.  相似文献   
8.
《Ceramics International》2022,48(24):36401-36409
Catalytic supercritical water oxidation (SCWO) of an organophosphate flame retardant, namely tri-n-butyl phosphate (TNBP) was studied. Firstly, copper oxide nanoparticles (NPs) were synthesized in SCW and their properties were characterized by various analyses. Afterwards, their catalytic performance was investigated under different conditions including reaction temperature (400–500 °C), TNBP volume percentage in the feed (1–4%), oxidant ratio (0–2) and reaction time (50–150 min) based on response surface methodology (RSM). The synthesized CuO NPs had an average particle size of 30 nm with a narrow distribution. According to RSM analysis, the reaction temperature and time are the most significant factors; whereas, the impact of the other factors, especially TNBP volume percentage in the feed, was found to be negligible. Overall, excellent performance was achieved under optimal conditions found by the RSM, which was reaction temperature of 500 °C, TNBP volume percentage of 4%, oxidant ratio of 1.5, and reaction time of 90 min. The TOC removal efficiency as an indicator of TNBP degradation was about 99%. Finally, in vitro cell viability assays for the cytotoxicity evaluation of fresh and SCW-treated solution were applied. The results of MTT showed that SCWO converts TNBP into by-product that did not induce any cytotoxicity.  相似文献   
9.
The purpose of this study was to develop a physico-mathematical model and technique for estimation of chemical bond stability depending on electric field intensity of an external point charge. A hypothesis for a possible physico-chemical mechanism of the formation of additional harmful gases in the rock destruction by blasting was proposed. The theoretical basis of the hypothesis is the method of theretical evaluation of bond energy depending on the distance to a point charge, the third Coulomb centre. The quantum-mechanical model for calculating the electronic terms of molecules makes it possible to solve problems associated with the determination of parameters of molecules under the action of various physical fields on the system under consideration. The model was approved for some diatomic molecules. The discrepancy between the experimental data and calculated data did not exceed 14%, which proves accuracy of the obtained results. The model can be used in the field of research into the causes of gas-dynamic phenomena in underground coal mines, in studies of the degree of stability of nanostructured components of coal under physical influences, and in the theoretical design of new compounds and structures in the field of nanomaterial science and nanotechnology.  相似文献   
10.
Possibility of formation of quinary and senary equimolar high entropy oxides from the Co-Cr-Fe-Mg-Mn-Ni-O system is presented. Different proposed compositions are synthesized using the solid-state reaction route at high temperatures (900−1100 °C) and quenched to room temperature. Phase composition of the samples is studied, showing tendency toward formation of two main phases: rock salt-structured Fm-3 m and spinel-structured Fd-3 m. It is documented that the annealing temperature has a profound effect on stability of both structures, and at 1100 °C usually the highest content of Fm-3 m phase is usually observed. Three different oxides, namely, (Co,Cr,Fe,Mn,Ni)3O4, (Co,Cr,Fe,Mg,Mn)3O4 and (Cr,Fe,Mg,Mn,Ni)3O4 are obtained as single-phase materials, which structure can be described as the high entropy Fd-3 m spinel one. The latter two compounds have not been previously reported in the literature. Activated character of the electrical conductivity dependence on temperature is observed, with relatively high total conductivity at high temperatures and corresponding high absolute values of Seebeck coefficient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号