首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   0篇
  国内免费   7篇
化学工业   236篇
金属工艺   79篇
机械仪表   30篇
能源动力   6篇
轻工业   10篇
一般工业技术   38篇
冶金工业   20篇
原子能技术   2篇
自动化技术   10篇
  2020年   1篇
  2019年   1篇
  2013年   402篇
  2012年   1篇
  2007年   14篇
  2004年   3篇
  1999年   3篇
  1998年   4篇
  1964年   1篇
  1962年   1篇
排序方式: 共有431条查询结果,搜索用时 15 毫秒
1.
《钢铁冶炼》2013,40(6):414-424
Abstract

Magnesium aluminate spinel (MgAl2O4) is an excellent castable refractory product due to its high temperature thermal, chemical and mechanical properties. Alumina spinel castables are produced by addition of synthetic spinel or in situ spinel formation during the firing process. In the first part of the experimental studies, alumina rich MgAl2O4 spinel castable was produced using a solid state reaction technique. Tabular alumina and sea water magnesia (<100 μm) were used as starting raw materials. In the second part of the experimental studies, commercial synthetic spinel added castables were produced. In order to compare experimental results, both parts of the experimental study involved compositions with the same proportions of MgO. α-500 hydratable alumina was used as binder. Castables were sintered at 1500 and 1600°C. Water absorption, apparent porosity, bulk density and cold crushing strength values were considered and the optimum sintering temperature, proportions of synthetic spinel and sea water magnesia were determined. The XRD patterns confirm the phase formation of MgAl2O4. Moreover, the physical properties of the castables were supported by this XRD analysis. Scanning electron microscopy investigations of the fired samples were carried out to compare the effect of synthetic spinel addition and in situ phase formation on the physical properties of the castables. The mechanism of slag penetration to two types of zero cement castables for steel ladles was examined and the penetration layer chemically analysed by energy dispersive X-ray analysis studies.  相似文献   
2.
Abstract

The present work aims to forecast mould filling, void shape, location and size as well as columnar to equiaxed transition (CET) in commercial pure aluminium casting. A model coupling the momentum equations of the fluid flow and heat transfer equations is presented, in which metallostatic pressure, air gap and oxide layer are considered. Different casting parameters were investigated such as casting configuration by varying the plate thickness from 5 to 20 mm, melt superheat from 40 to 120°C, mould preheat up to 200°C and different pouring heads ranging from 0·3 to 0·6 m. Regarding the microstructure and void formation, the approach based on the Niyama criterion, was considered. The experimental verification of the model was achieved by gravity die casting in the form of a rectangular cavity. Voids inside aluminium plate were investigated by X-ray imaging. Microstructure and CET was investigated microscopically. The supposed model proves its validity for mould filling and in detecting the void features and CET.  相似文献   
3.
《粉末冶金学》2013,56(3):238-243
Abstract

A new methodology was developed to observe and measure tool wear and tool surface quality during the die compaction process. The newly developed method is a non-destructive test that relies on silicon rubber to transcribe the inner surface profile of the compaction die. After verification of the method, aluminium and iron alloy powders were compacted to quantify tool wear and tool surface quality with two die materials, tungsten carbide and tool steel. The tool surface quality was quantified by recording surface roughness of the die replicas on a surface profilometer.  相似文献   
4.
《钢铁冶炼》2013,40(6):473-480
Abstract

This study investigates some effects of austenite microstructure on processes leading to copper hot shortness. Low carbon steels containing 0˙55 wt-% copper were subjected to two thermal profiles in an infrared image furnace with attached confocal scanning laser microscope: hold at 1150°C for 60 s; hold at 1150°C for 60 s, quench to 400°C, reheat to 1150°C. Heat treatments were conducted in dried/deoxidised argon to image microstructures. Subsequent samples were oxidised in air. The oxide/metal interface was studied in a scanning electron microscope. Additional confocal scanning laser microscope experiments involved melting copper directly on the steel. After quench/reheat, austenite grain size decreased by a factor of ~1˙7 and grain boundaries were redistributed. Copper evolved during the first heating was no longer found at boundaries. Results from direct copper exposure reveal an apparent effect of boundary character on copper penetration rate. Possible mechanisms by which hot shortness is affected are discussed.  相似文献   
5.
《粉末冶金学》2013,56(2):200-204
Abstract

The atomising gas pressure is one of several important process parameters that affect the characteristics of the powder particles. The work analyses qualitatively the influence of the atomising gas pressure on 63A solder alloy fine powders. Also studied was the mechanism of the effect of the atomising pressure on the base of the air dynamics through the atomising 63A solder alloy experiment with different atomising pressures on the supersonic nozzle. The results indicate that 63A solder alloy fine powders may be attained, which can satisfy the SMT application requirement when the atomising gas pressure is at 0.7 MPa.  相似文献   
6.
7.
The van Oss–Chaudhury–Good theory (vOCGT) was checked for a large artificial set of work of adhesion input data calculated for 15 solids and 300 liquids. Numerical values of LW component and acid (A) and base (B) parameters were assigned to 15 solids. These 15 solids were grouped in 5 sets of 3 solids in each. Also numerical values of LW component and A and B parameters were assigned to 300 liquids (three sets of 100 liquids in each). Data for these solids and liquids were especially selected to represent real types of materials encountered in practice. For all 15 solids and 300 liquids the work of adhesion values were calculated and these values were assumed to be error-free. Next, new values of the work of adhesion were obtained by adding a random homoscedastic error (A vector of random variables is homoscedastic if it has the same finite variance.) of the normal distribution (Also called the Gaussian distribution — it is continuous probability distribution defined by two parameters: the mean and variance (standard deviation squared, σ 2).), belonging to 8 distributions of a mean value equal to the error-free work of adhesion value and standard deviations of 0.5, 1, 2, 5, 7, 10, 15 and 20 mJ/m2. The LW components and A and B parameters for these solids were back-calculated for each error level. Two different methods for the solution of a 3-equation set were used and they gave practically the same results irrespective of the error level and liquids and solids used. It was found that there existed a linear correlation between the RMSE (root mean square error) of the solution and the standard deviation of the work of adhesion data. This correlation was highly significant (with a correlation coefficient higher than 0.999) and was true separately for LW component, A and B parameters as well as for the total solution vector (i.e., combinedly for the LW component, A and B parameters). The RMSE values of the total solution vector (having as elements values of the LW component, A and B parameters) as well as separately for LW component and A and B parameters were correlated with the condition number of a given 3-equation set. A very good correlation was found only for the total solution, much worse for A or B parameters, and practically there was a lack of correlation for the LW component. Based on the correlation between the RMSE and the standard deviation of the work of adhesion it was possible to determine what should have been the maximal standard deviation of the work of adhesion if the calculated value of a given LW component or A or B parameter did not differ by more than 1 mJ/m2 from an error-free (true) value.  相似文献   
8.
Abstract

Using computer aided design/computer aided manufacturing technology, an automatic welding system is designed and manufactured for high current, high speed, and high deposition metal arc active gas (MAG) welding. The welding torch structure is evaluated and optimised via the finite element method and practical welding technology experiments. Finally, the process of high deposition MAG welding is investigated, and it is highlighted that on application of a longitudinal magnetic field to the high deposition MAG welding process, a steady metal transfer and drop deposition condition can be achieved, which is suited to the demands of high current, high speed welding technology.  相似文献   
9.
《应用陶瓷进展》2013,112(4):180-185
Abstract

In magnetron sputtering of SrBi2Ta2O9 (SBT) thin films, bismuth deficiency tends to result in formation of an unwanted pyrochlore phase. In this paper, the dependence of deposition parameters on phase evolution in Sr deficient SBT thin films is studied. Only when bismuth is over stoichiometric (Sr0.74Bi2.2Ta2O9+x) can one obtain pure SBT structure. Decreasing the Bi content encourages formation of the Bi deficient pyrochlore phase. At 1.04 of Bi, only the pyrochlore phase forms. The pyrochlore phase is very stable even at 900°C.  相似文献   
10.
Surface modification of thermotropic liquid crystalline aromatic polyester (LCP) films was carried out by low-pressure plasma treatment to improve the initial adhesion as well as the long-term adhesion reliability, a measure of durability between the LCP films used as substrates for printed circuit boards. Plasma irradiation was carried out in various plasma gases with different plasma modes such as reactive-ion-etching, and direct-plasma (DP) with pressures ranging from 6.7 Pa to 26.6 Pa. The introduction of polar groups on the film surface such as phenolic hydroxyl groups and carboxyl groups enhanced the initial adhesion by increased chemical interaction. However, if the concentration of polar groups became too high, the longterm adhesion reliability estimated by the pressure cooker test was degraded due to the acceleration of the penetration of water molecules into the interface. A large surface roughness was also effective in preventing the decrease in the long-term adhesion reliability. However, too much increase in surface roughness decreases the long-term adhesion reliability. The DP-treatment in the O2 atmosphere at a gas pressure of 6.7 Pa was found to be the best plasma condition for both the initial adhesion as well as the long-term adhesion reliability between the LCP films.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号