首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
化学工业   32篇
金属工艺   2篇
能源动力   11篇
一般工业技术   3篇
冶金工业   2篇
  2022年   4篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2014年   5篇
  2013年   4篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  1999年   2篇
  1995年   1篇
  1994年   3篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
The performance of low-to-intermediate temperature (400–800?°C) solid oxide fuel cells (SOFCs) depends on the properties of electrolyte used. SOFC performance can be enhanced by replacing electrolyte materials from conventional oxide ion (O2-) conductors with proton (H+) conductors because H+ conductors have higher ionic conductivity and theoretical electrical efficiency than O2- conductors within the target temperature range. Electrolytes based on cerate and/or zirconate have been proposed as potential H+ conductors. Cerate-based electrolytes have the highest H+ conductivity, but they are chemically and thermally unstable during redox cycles, whereas zirconate-based electrolytes exhibit the opposite properties. Thus, tailoring the properties of cerate and/or zirconate electrolytes by doping with rare-earth metals has become a main concern for many researchers to further improve the ionic conductivity and stability of electrolytes. This article provides an overview on the properties of four types of cerate and/or zirconate electrolytes including cerate-based, zirconate-based, single-doped ceratezirconate and hybrid-doped ceratezirconate. The properties of the proton electrolytes such as ionic conductivity, chemical stability and sinterability are also systematically discussed. This review further provides a summary of the performance of SOFCs operated with cerate and/or zirconate proton conductors and the actual potential of these materials as alternative electrolytes for proton-conducting SOFC application.  相似文献   
2.
Two-step sintering (TSS) was applied to control the grain growth during sintering of a novel calcium magnesium silicate (Ca3MgSi2O8 – Merwinite) bioceramic. Sol–gel derived nanopowders with the mean particle size of about 90 nm were sintered under different TSS regimes to investigate the effect of sintering parameters on densification behavior and grain growth suppression. Results showed that sintering of merwinite nanopowder under optimum TSS condition (T1 = 1300 °C, T2 = 1250 °C) yielded fully dense bodies with finest microstructure. Merwinite compacts held at T2 = 1250 °C for 20 h had the average grain size of 633 nm while the relative density of about 98% was achieved. Mechanical testing was performed to investigate the effect of grain growth suppression on the hardness and fracture toughness. Comparison of mechanical data for samples sintered under two sintering regimes, including TSS and normal sintering (NS), showed TSS process resulted in significant enhancement of fracture toughness from 1.77 to 2.68 MPa m1/2.  相似文献   
3.
The effect of grain size and density of hydroxyapatite particles, which were prepared by different spray-pyrolysis temperatures, on the sinterability of hydroxyapatite disk was investigated. Calcium phosphate solution (Ca/P ratio of 1.67 and 0.1 M concentration) was prepared by reacting calcium nitrate tetrahydrate and diammonium hydrogen phosphate solutions, and adding nitric acid. Spray-pyrolysis was carried out at 900 °C, 1200 °C, and 1500 °C at a carrier gas flowing rate of 10 L/min. The particles synthesized at 900 °C were large, hollow spheres with a hole at the outer surface, a broad size distribution, but had small grain sizes. Conversely, the particles synthesized at 1500 °C were small, solid spheres with a narrow size distribution, but had large grain sizes. The particles synthesized at 1200 °C had intermediate properties. A sinterability test conducted at 1100 °C for 1 h demonstrated that small and dense particles with large grain sizes showed a higher relative sintered density compared with large and hollow particles with small grain sizes. The results were explained in terms of the grain size and density of a particle, which were inversely and proportionally affected to sinterability. The practical implication of these results is that highly sinterable hydroxyapatite powders can be synthesized through spray-pyrolysis at a high temperature under a fixed initial concentration of calcium phosphate solution and flow rate of carrier gas.  相似文献   
4.
Hydroxyapatite (HA) has been extensively studied for its exceptional ability in promoting osseointegration as in bone graft substitute and biomimetic coating of prosthetic implants. However poor mechanical properties of HA, in particular its low fracture toughness, has made its widespread adaption in a number of biomedical applications challenging. Here we employ an optimized wet precipitation method to synthesize nanocrystalline HA with significantly improved mechanical properties. In addition doping by MgO is found to effectively suppress grain growth and enhance fracture toughness by nearly 50% while good densification and phase stability in all samples regardless of concentration of dopant are fully maintained. Microstructural analysis further suggests that the exceptionally superior mechanical properties can be explained by migration of MgO to grain boundaries where they transform the more common transgranular fracture into an intergranular mode. Our biodegradation tests also confirm that MgO-doped HA is indeed a suitable candidate for load bearing implants.  相似文献   
5.
Nano-sized BaCe0.8Sm0.2O3−δ and Cu-doped BaCe0.8Sm0.2O3−δ proton conducting electrolyte powders are synthesized by citric-nitrate method, and then the powder properties are investigated. The synthesized BaCe0.8Sm0.2O3−δ powder acquires pure perovskite structure after heat treatment above 1100 °C, while impurity phases such as BaCO3 and Ce0.8Sm0.2O2−δ are formed below 1100 °C. The BaCe0.8Sm0.2O3−δ and Cu-doped BaCe0.8Sm0.2O3−δ showed similar powder characteristics, except the shrinkage rate. The sintering temperature for densification of the synthesized BCS are significantly reduced as much as ∼300 °C by small amount of Cu. Compared to drastic reduction in sintering temperature, the total conductivity and the activation energy of Cu doped BCS turn out to deviate negligibly from those of pure BCS.  相似文献   
6.
The sinterability of manganese oxide (MnO2) doped hydroxyapatite (HA) ranging from 0.05 to 1 wt% was investigated. Green samples were prepared and sintered in air at temperatures ranging from 1000 to 1400 °C. Sintered bodies were characterized to determine the phase stability, grain size, bulk density, hardness, fracture toughness and Young's modulus. XRD analysis revealed that the HA phase stability was not disrupted throughout the sintering regime employed. In general, samples containing less than 0.5 wt% MnO2 and when sintered at lower temperatures exhibited higher mechanical properties than the undoped HA. The study revealed that all the MnO2-doped HA achieved >99% relative density when sintered at 1100-1250 °C as compared to the undoped HA which could only attained highest value of 98.9% at 1150 °C. The addition of 0.05 wt% MnO2 was found to be most beneficial as the samples exhibited the highest hardness of 7.58 GPa and fracture toughness of 1.65 MPam1/2 as compared to 5.72 GPa and 1.22 MPam1/2 for the undoped HA when sintered at 1000 °C. Additionally, it was found that the MnO2-doped samples attained E values above 110 GPa when sintered at temperature as low as 1000 °C if compared to 1050 °C for the undoped HA.  相似文献   
7.
《Ceramics International》2022,48(5):6758-6766
La2Ce2O7 (LCO) based materials are of a paramount importance since they can be utilized for ammonium production, thermal barrier application, catalysts, hydrogen production and solid oxide fuel cells (SOFCs). In this work, a nano crystalline LCO powder was prepared using glycine-nitrate combustion method and then its properties were comprehensively characterized. The structural analysis of the synthesized LCO was carried out using conventional X-ray diffraction (XRD) and Raman spectroscopy. In a disordered phase, LCO is a biphasic mixture composed of C- and F-type phases. Densification studies were performed by sintering LCO pellets at different sintering temperatures. A densification of ≥95% was observed in all the samples with a very little variation. Sintering temperature had a marked effect on the electrical conductivity of LCO. The LCO sintered at 1100 °C showed the highest conductivity (3.68 mS/cm at 700 °C in air). The electrical conductivity was found to be decreasing with an increase in sintering temperature from 1100 to 1400 °C. To understand the behavior, the analysis of distribution function of relaxation times (DFRTs) utilized for correct separation of grain and grain boundary resistances. The presence of C- and F- type phases calculated from Raman spectra plays a crucial role in deciding conduction behavior of LCO. The results suggest a strong relationship between history of the ceramics preparation and their electrical properties.  相似文献   
8.
BaCe0.7Zr0.1Y0.2O3-δ (BCZY) is one of the promising electrolytic candidate for solid oxide fuel cell (SOFC) due to its good proton conductivity and better stability. Herein, the effect of dual sintering aids such as CuO-Bi2O3 upon the sinterability at low temperature, improved electrochemical properties, and thermo-chemical changes about proton-conducting BaCe0.7Zr0.1Y0.2O3-δ electrolyte were investigated in detail. FESEM micrographs and shrinkage curves revealed significant improvement in sinterability and densifications of BCZY electrolyte. The dense pellets were sintered with CuO-Bi2O3 (2–3 mol %) as sintering aids at a temperature of 1150 °C for 5 h. The perfectly uniform distribution of sintering aids increased the linear shrinkage of BCZY from 5% till 19–21%. The crystallite size and grain growth within the structure was enhanced due to the formation of the melting phase of Bi2O3 and Cu2+ incorporation in the perovskite structure. The elevated and improved electrochemical measurement for BCZY with 2 mol% of CuO-Bi2O3 as sintering aid categorized it well suited for solid oxide fuel cells.  相似文献   
9.
In the present work, Al-xB4C nanocomposite (x = 0, 1, 2, 3, 4 and 5 in wt%, having the average B4C size of 50 nm) were prepared using a high-energy ball mill. The milling times up to 16 h were applied. Then, the microstructural evolutions, mechanical properties, compressibility and sintering behavior of nanocomposites were investigated. The changes in powders morphology and microstructure during the milling process were characterized by laser diffraction particle size analyzer (LDA), SEM, XRD, EDS and TEM techniques. Compressibility and sintering behavior of milled powders compacted under different pressures (100–900 MPa) and at different sintering temperatures (500, 550 and 600 °C) were also studied. The pressing behavior of the nanocomposites was analyzed using linear compaction equations developed by Heckel, Panelli-Filho and Ge. The results showed the significant effects of B4C amounts and sintering temperatures on the compressibility and sintering behavior of nanocomposites. The increase in the B4C amount led to a decrease in both the compressibility rate and the sinterability of specimens. The maximum compression strength of 265 MPa and Vickers hardness of 165 VHN were obtained for Al-5 wt.% B4C nanocomposite milled for 16 h followed by sintering at 600 °C.  相似文献   
10.
《Ceramics International》2020,46(11):18940-18947
In this study, NdAlO3 with perovskite structure was synthesized by the stearic acid method at relatively low temperature. The structural characteristics of the as-synthesized product were identified by TG–DSC, XRD, FT–IR, SEM, and TEM techniques. Using the powders as starting materials, NdAlO3 bulk microwave ceramics were prepared, and the corresponding densification process, microstructural and dielectric properties were studied. The XRD and FI–IR results confirmed that single phase NdAlO3 could be prepared at low temperature by the stearic acid method. A unique two-dimensional platelike morphology with an unevenly dispersed bubble shape structure was observed in the calcined powder. However, the TEM result revealed that the powder calcined at 800 °C had a good dispersity accompanied with narrow particle size distribution within a range of 20–35 nm. The average particle size of 27.3 nm was in accordance with that calculated from the XRD data. Using the powder calcined at 800 °C as raw materials, the as-obtained NdAlO3 ceramics sintered at 1500 °C for 4 h possessed the highest density and favorable combined microwave dielectric properties (i.e., εr = 23.02, Q × f = 65320 GHz, and τf = −32.4 ppm/°C). The present work developed a fast, energy-efficient approach to synthesize NdAlO3 powder used as promising raw materials of microwave dielectric ceramics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号