首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7865篇
  免费   411篇
  国内免费   274篇
电工技术   123篇
综合类   288篇
化学工业   2416篇
金属工艺   356篇
机械仪表   172篇
建筑科学   251篇
矿业工程   49篇
能源动力   245篇
轻工业   168篇
水利工程   121篇
石油天然气   50篇
武器工业   34篇
无线电   325篇
一般工业技术   1634篇
冶金工业   1002篇
原子能技术   46篇
自动化技术   1270篇
  2023年   115篇
  2022年   129篇
  2021年   172篇
  2020年   205篇
  2019年   183篇
  2018年   207篇
  2017年   265篇
  2016年   237篇
  2015年   174篇
  2014年   273篇
  2013年   442篇
  2012年   366篇
  2011年   738篇
  2010年   466篇
  2009年   508篇
  2008年   470篇
  2007年   502篇
  2006年   421篇
  2005年   373篇
  2004年   353篇
  2003年   279篇
  2002年   272篇
  2001年   196篇
  2000年   131篇
  1999年   134篇
  1998年   132篇
  1997年   91篇
  1996年   75篇
  1995年   62篇
  1994年   51篇
  1993年   50篇
  1992年   42篇
  1991年   33篇
  1990年   50篇
  1989年   35篇
  1988年   34篇
  1987年   30篇
  1986年   23篇
  1985年   32篇
  1984年   29篇
  1983年   15篇
  1982年   22篇
  1981年   13篇
  1980年   10篇
  1979年   10篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1957年   6篇
  1955年   13篇
排序方式: 共有8550条查询结果,搜索用时 46 毫秒
1.
《Ceramics International》2022,48(6):8297-8305
Pure and Sn/Fe co-doped (0.2 at.% Sn and 0.6 at.% Fe, 0.6 at.% Sn and 0.2 at.% Fe, 1.0 at.% Sn and 1.0 at.% Fe) TiO2 nanoparticles were synthesized via a sol-gel method and subsequently calcined at different temperatures. Furthermore, the particles were analyzed by TG-DSC, XRD, TEM, HRTEM, EDS, SAED and UV–Vis for investigating the influences of dopant and calcination temperature on the thermal effect, composition, morphology, energy band gap (Eg) and the degradation efficiency of methyl orange (MO) under various light irradiations respectively. Results indicated that Sn/Fe co-doping inhibited the crystallization transformation from anatase to rutile phase of TiO2 and decreased the Eg. The increased calcination temperature and Sn/Fe co-doped effect brought about the abnormal grain growth of TiO2 nanoparticles. 0.6 at.% Sn/0.2 at.% Fe and 1.0 at.% Sn/1.0 at.% Fe co-doped TiO2 nanoparticles presented better photocatalytic performance than pure and 0.2 at.% Sn/0.6 at.% Fe co-doped TiO2 nanoparticles under visible light irradiation mainly due to the decreased Eg. On the contrary, 0.2 at.% Sn and 0.6 at.% Fe co-doped TiO2 nanoparticles calcined at 650 °C showed the most excellent photocatalytic performance under UV light irradiation, which was about twice as large as that of pure TiO2 possibly due to the formed hybrid structure of anatase and rutile phase as well as the h+-mediated decomposition pathway.  相似文献   
2.
《Ceramics International》2021,47(23):33070-33077
In this work, a number of precursors with 1:1 silicon to carbon atoms ratio and various carbon atom distributions were synthesized and pyrolyzed in order to obtain silicon oxycarbide based materials. The different carbon atom distributions were obtained using both simple monomers with only one silicon atom, as well as large monomers containing either four or sixteen silicon atoms with predefined carbon atom positions. The silicon oxycarbide based materials were investigated using IR, XRD, 29Si MAS NMR and elemental analysis after annealing at various temperatures, as well as TG. The research shows that carbon atom distribution has great impact on the structure of final material and can be used to tailor the material for its projected uses.  相似文献   
3.
《Ceramics International》2021,47(18):25883-25894
Oily wastewater treatment is a global challenge due to the substantial amount of effluent resulted from many industrial and domestic activities. To overcome the challenge of using existing treatment approach and fouling, superoleophobic coatings were fabricated. In this study, a superoleophobic membrane surface was obtained using the sol-gel technique with perfluorooctanoate (PFO), poly (diallyl dimethylammonium chloride) (PDADMAC), and nanoparticles as complex-polymer nanocomposites. The effects of coating cycles on the surface structure, chemical properties, surface chemistry, and oleophobicity of the surface were examined using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and oil contact angle measurement. The results showed that the coated layer successfully adhered to the substrate surface. However, the chemical stability with respect to oil contact angle (OCA) revealed a decline at pH 7 and pH 9 and maintained stability at pH 3. Besides, oil flux at 63.0 L/m2. h was achieved for PDADMAC-Al2O3/44 wt% PFO and the highest separation efficiency of 98% was obtained. Furthermore, the oil rejection decreases as the oil concentration increases from 1 to 3 g/L. OCA of 155° was obtained after 5 coating cycles. Apart from mitigating substrate fouling, the superoleophobic and superhydrophilic coating can be applied to a ceramic-based hollow fibre membrane and efficiently used for the separation of oil from oily wastewater.  相似文献   
4.
A novel TiO2 thin film was prepared on the ceramic hollow fiber by the sol-gel method using poly(vinylpyrrolidone) (PVP) and polyvinyl alcohol (PVA) as additives. SEM images verified the formation of TiO2 layer with various thickness using different composition of titania sols. The effect of the PVP and PVA contents on the TiO2 sol properties, the separation and the antifouling performance of the ultrafiltration membranes were investigated thoroughly. When the contents of PVP and PVA were 1.0 wt% and 0.8 wt%, respectively, the resultant membrane showed a thickness of 0.55 μm with a pure water flux of 255 L m?2 h?1. In addition, the adherent foulant bovine serum albumin was applied to evaluate the antifouling performance. During the three fouling-recovery cycles, the flux recovery ratio and the flux decay ratio maintained about 99% and 30%. The BSA flux and rejection were still 169 L m?2 h?1 and 96.9% after the cycles, indicating a superior antifouling property.  相似文献   
5.
《Ceramics International》2021,47(21):30349-30357
Mesoporous glass 58S (60SiO2, 36CaO, 4P2O5 mol.%) has excellent bioactivity, biocompatibility, and forms strong bonds with bone making it attractive for implants. Mesoporous bioactive glass 58S powder is typically consolidated through sintering in order to produce an implant with sufficient strength to withstand the in vivo loads. However, heating the glass often leads to crystallinity, which is undesirable because it can reduce bioactivity. Hence, there is a trade-off between minimising crystallinity and maximising glass strength. Even at relatively low temperatures, it has been suggested that segregation of calcium and phosphate from silica within the glass can lead to crystallization. In this work, we confirm the occurrence of low temperature segregation in bioactive glass 58S using electron microscopy with elemental mapping. We probe how segregation affects the material properties of post-sintered glasses via comparison to a glass where phase separation is prevented via addition citric acid to the parent sol.  相似文献   
6.
Abstract

Industry 4.0 aims at providing a digital representation of a production landscape, but the challenges in building, maintaining, optimizing, and evolving digital models in inter-organizational production chains have not been identified yet in a systematic manner. In this paper, various Industry 4.0 research and technical challenges are addressed, and their present scenario is discussed. Moreover, in this article, the novel concept of developing experience-based virtual models of engineering entities, process, and the factory is presented. These models of production units, processes, and procedures are accomplished by virtual engineering object (VEO), virtual engineering process (VEP), and virtual engineering factory (VEF), using the knowledge representation technique of Decisional DNA. This blend of the virtual and physical domains permits monitoring of systems and analysis of data to foresee problems before they occur, develop new opportunities, prevent downtime, and even plan for the future by using simulations. Furthermore, the proposed virtual model concept not only has the capability of Query Processing and Data Integration for Industrial Data but also real-time visualization of data stream processing.  相似文献   
7.
8.
Tricalcium silicate (C3S) and hydroxyapatite (HAp) composites were fabricated through the sol-gel process. The aim of this research is to improve the biocompatibility of C3S through HAp addition and study the potential of using this as coating materials. The composites (HAp/C3S) were characterised by Fourier transform infrared spectrometry, thermal gravity-differential thermal analysis and X-ray diffraction. The working and setting times of cement pastes were tested using Gillmore needle. Mechanical properties were examined by nanoindentation and material testing system. In vitro biocompatibility of the materials were studied by cell attachment and viability of L929 and MG-63 cells. HAp/C3S as a coating material on gelatin film were measured with the surface roughness and imaged by scanning electron microscope. With the addition of HAp, no undesirable free CaO was detected with the synthesis by the sol-gel preparation. The pH values of HAp added groups were between 7.54 and 8.76, which were much lower than pure C3S group (pH?=?11.75). For in vitro studies, the presence of HAp could effectively enhance the cell attachment and viability of both L929 and MG-63 cells grown in the extract or directly on the composites. However, the mechanical properties of the composites were impaired as compared to pure C3S. Lastly, HAp/C3S cement could be evenly coated on gelatin film. HAp is successfully demonstrated to improve C3S biocompatibility with this new composites HAp/C3S. C-75 (75% C3S and 25% HAp), in particular, has good biocompatibility, relatively high compressive strength and can be uniformly coated onto gelatin film. Thus, C-75 is a promising material for further investigation as a coating on other biopolymers.  相似文献   
9.
10.
《Ceramics International》2022,48(11):15268-15273
SiC/SiC mini-composites reinforced with SiC fibers coated with different numbers of ZrSiO4 sublayers prepared via a non-hydrolytic sol-gel process were fabricated. The tensile strength and work of fracture of the prepared SiC/SiC mini-composites were determined, and the relationship between their mechanical properties and fracture morphologies was discussed. The toughening mechanism and the variation tendency of their mechanical properties were further elaborated by analyzing the interfacial debonding morphologies of the SiC/SiC mini-composites with 1 and 4 layers of ZrSiO4 interphase as well as the results of prior studies. A relatively rare phenomenon—the delamination of the multilayer ZrSiO4 interphase in the SiC/SiC mini-composites but not on the SiC fibers—was observed, which clearly demonstrated the weak bonding between the ZrSiO4 sublayers in the SiC/SiC mini-composites. The ZrSiO4 sublayer delamination mechanism was then explained based on the high-magnification morphologies found in and beside the ZrSiO4 interphase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号