首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   716篇
  免费   16篇
  国内免费   12篇
电工技术   11篇
综合类   6篇
化学工业   320篇
金属工艺   49篇
机械仪表   9篇
建筑科学   1篇
矿业工程   3篇
能源动力   108篇
轻工业   40篇
水利工程   1篇
石油天然气   4篇
无线电   47篇
一般工业技术   106篇
冶金工业   12篇
原子能技术   10篇
自动化技术   17篇
  2024年   3篇
  2023年   31篇
  2022年   43篇
  2021年   41篇
  2020年   30篇
  2019年   30篇
  2018年   33篇
  2017年   18篇
  2016年   23篇
  2015年   12篇
  2014年   35篇
  2013年   41篇
  2012年   22篇
  2011年   65篇
  2010年   41篇
  2009年   57篇
  2008年   49篇
  2007年   24篇
  2006年   34篇
  2005年   18篇
  2004年   23篇
  2003年   21篇
  2002年   9篇
  2001年   4篇
  2000年   6篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   1篇
  1995年   4篇
  1994年   7篇
  1993年   2篇
  1992年   1篇
  1990年   3篇
排序方式: 共有744条查询结果,搜索用时 15 毫秒
1.
A new route of materials synthesis, namely, high-temperature, high-pressure reactive planetary ball milling (HTPRM), is presented. HTPRM allows for the mechanosynthesis of materials at fully controlled temperatures of up to 450 °C and pressures of up to 100 bar of hydrogen. As an example of this application, a successful synthesis of magnesium hydride is presented. The synthesis was performed at controlled temperatures (room temperature (RT), 100, 150, 200, 250, 300, and 325 °C) while milling in a planetary ball mill under hydrogen pressure (>50 bar). Very mild milling conditions (250 rpm) were applied for a total milling time of 2 h, and a milling vial with a relatively small diameter (φ = 53 mm, V = ~0.06 dm3) was used. The effect of different temperatures on the synthesis kinetics and outcome were examined. The particle morphology, phase composition, reaction yield, and particle size were measured and analysed by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) techniques. The obtained results showed that increasing the temperature of the process significantly improved the reaction rate, which suggested the great potential of this technique for the mechanochemical synthesis of materials.  相似文献   
2.
A solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a SSPEC cell the electrodes distance is minimized, while the use of polymer-based membranes alleviates the need for liquid electrolytes, and at the same time they can separate the anode from the cathode. In this work, we have made and tested, firstly, a SSPEC cell with a Pt/C electrocatalyst as the cathode electrode, under purely gaseous conditions. The anode was supplied with air of 80% relative humidity (RH) and the cathode with argon. Secondly, we replaced the Pt/C cathode with a photocathode consisting of 2D photocatalytic g-C3N4, which was placed in tandem with the photoanode (tandem-SSPEC). The tandem configuration showed a three-fold enhancement in the obtained photovoltage and a steady-state photocurrent density. The mechanism of operation is discussed in view of recent advances in surface proton conduction in absorbed water layers. The presented SSPEC cell is based on earth-abundant materials and provides a way towards systems of artificial photosynthesis, especially for areas where water sources are scarce and electrical grid infrastructure is limited or nonexistent. The only requirements to make hydrogen are humidity and sunlight.  相似文献   
3.
《Ceramics International》2020,46(15):23695-23705
Solid electrolytes are the key component in designing all-solid-state batteries. The Li1.3Al0.3Ti1.7(PO4)3 (LATP) structure and its derivatives obtained by doping various elements at Ti and Al site acts as good solid electrolytes. However, there is still scope for enhancing the ionic conductivity using simple precursors and preparation methods. In this study, the Li superionic conductors Li1.3Al0.3Ti1.7-xZrx(PO4)3 (LATZP) with 0 ≤ x ≤ 0.2 have been successfully prepared by the solid-state reaction route. The structural, morphological, and ionic transport properties were analyzed using several experimental techniques including powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and impedance spectroscopy (IS). The presence of two relaxation processes corresponding to grain and grain boundary was studied using various formalisms. We have observed that grain effects dominate at lower temperatures (<100 °C) while the grain boundary at higher temperatures (> 200 °C) on ionic conductivity. The relaxation mechanisms of grain and grain boundaries were investigated by the Summerfield scaling of AC conductivity. The highest total ionic conductivity of 2.48 × 10-4 S/cm at 150 °C and 5.50 × 10-3 S/cm at 250 °C was obtained for x = 0.1 in Li1.3Al0.3Ti1.6Zr0.1(PO4)3 sintered at 950 °C/6 h in the air. The ionic conductivity value was found to be higher than the ionic conductivity reported for LATP prepared via solid-state reaction mechanism using the same precursors and conditions.  相似文献   
4.
The polymer electrolyte based solid-state lithium metal batteries are the promising candidate for the high-energy electrochemical energy storage with high safety and stability. Moreover, the intrinsic properties of polymer electrolytes and interface contact between electrolyte and electrodes have played critical roles for determining the comprehensive performances of solid-state lithium metal batteries. In this review, the development of polymer electrolytes with the design strategies by functional units adjustments are firstly discussed. Then the interfaces between polymer electrolyte and cathode/anode, including the interface issues, remedy strategies for stabilizing the interface contact and reducing resistances, and the in-situ polymerization method for enhancing the compatibilities and assembling the batteries with favorable performances, have been introduced. Lastly, the perspectives on developing polymer electrolytes by functional units adjustment, and improving interface contact and stability by effective strategies for solid-state lithium metal batteries have been provided.  相似文献   
5.
6.
In the present work, we have studied the feasibility of a method based on polyallyldiglycol-carbonate (PADC) films to investigate the effects of alpha particles on HeLa cervix cancer cells. Thin PADC films with thickness of about 20 μm were prepared from commercially available CR-39 films by chemical etching to fabricate custom-made petri dishes for cell culture, which could accurately record alpha particle hit positions. A special method involving “base tracks” for aligning the images of cell nuclei and alpha particle hits has been proposed, so that alpha particle transversals of cell nuclei can be visually counted. Radiobiological experiments were carried out to induce DNA damages, with the TdT-mediated dUTP Nick-End Labeling (TUNEL) fluorescence method employed to detect DNA strand breaks. The staining results were investigated by flow cytometer. The preliminary results showed that more strand breaks occurred in cells hit by alpha particles with lower energies. Moreover, large TUNEL positive signals were obtained even with small percentages of cells irradiated and TUNEL signals were also obtained from non-targeted cells. These provided evidence for the bystander effect.  相似文献   
7.
The phase structures of thermally processed wheat proteins (WP) and polyvinyl alcohol (PVOH) blends were studied by solid-state high-resolution NMR spectroscopy. The intermolecular interactions among the multi-component systems and the behavior of each component in the blends on scales of nanometers were examined. The mechanical properties of the blends were also measured and related to the phase structure studies. The results indicated that the polymer chains of WP could be homogeneously mobilized when thermally processed with glycerol and water as plasticisers, but the glycerol predominately associated with WP rather than PVOH in the blends. The intermolecular hydrogen bonding interactions between WP and PVOH caused some extent of miscibility in the system on scales of nanometers especially when the PVOH content was low. The tensile strength and modulus of the blends were improved as compared to WP. However, the intermolecular interactions were relatively weak and could not be further enhanced by increasing PVOH component in the blends. The particle miscible WP/PVOH blends contained plasticised WP and PVOH phases in conjunction with the miscible WP/PVOH phase. Increasing the PVOH content in the blends did not result in an increase of the percentage of the miscible phase and the blends tented to be immiscible while the elongation of the blends was reduced when increasing the PVOH content in the blends.  相似文献   
8.
孙峰  袁中直  李伟善 《辽宁化工》2003,32(3):122-125
介绍了低温固相合成技术的特点和优势,以及该技术在制备二次碱锰电池正极材料及其改性添加剂中的应用,纳米级MnO2正极材料以及由纳米改性添加剂修饰的MnO2正极材料在深度放电时具有更优越的性能。  相似文献   
9.
The quantitative investigation of the radical scavenging properties of polyaniline (PANI) upon reaction with excess of the stable DPPH radical (a 4:1 ratio of DPPH to aniline units in the polymer) was carried out using 15N and 13C solid state NMR spectroscopy. During the process the polyaniline was oxidised so that the imine content increased from 45 to 65%. The extent of oxidation measured by NMR was confirmed by N1s XPS analysis. However, within a 30 min reaction time, about 85% of the DPPH radicals were scavenged as monitored by the decay in its EPR signal. This is about 20 times greater than the fraction of DPPH required to oxidize PANI from an imine content of 45-65%. An identification of further redox processes is required to explain the high degree of radical scavenging. At the same time, there was no evidence of significant chemical binding or trapping of DPPH in the PANI structure.  相似文献   
10.
For the elucidation of the crystal structures of the two crystalline allomorphs of cellulose triacetate (CTA), namely CTA I and CTA II, two-dimensional (2D) solid-state through-bond 13C-13C and 1H-13C correlations NMR techniques applied to the two crystalline allomorphs of CTA. As a result, the 13C and 1H chemical shifts of the glucopyranose ring of CTA I and CTA II were completely assigned by the 2D NMR spectra of these allomorphs. On the 2D 13C-13C correlation spectrum of CTA II, two sets of the 13C-13C correlations from C1 to C6 were observed. This indicated that the CP/MAS 13C NMR spectrum of CTA II can be characterized by its overlapping of the 13C subspectra of two kinds of 2,3,6-triacetyl-anhydroglucopyranose units and that there are two magnetically non-equivalent sites in the unit cell of CTA II. In the case of CTA I, the numbers of respective 13C and 1H shifts of CTA I agreed with the those of the glucopyranose residue in the allomorph, strongly suggesting that the asymmetric unit of CTA I is only one glucose residue. In addition, conformational differences in the exocyclic C5-C6 bonds between CTA I and CTA II were strongly suggested by the notable differences in the 1H and 13C chemical shifts at the C6 sites of these allomorphs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号