首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
  国内免费   1篇
化学工业   17篇
金属工艺   1篇
能源动力   6篇
无线电   9篇
一般工业技术   25篇
冶金工业   1篇
自动化技术   2篇
  2023年   1篇
  2021年   2篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   7篇
  2010年   6篇
  2009年   6篇
  2008年   8篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  1999年   1篇
  1998年   2篇
  1982年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
Highly preferred oriented lead barium titanate (Pb1−x,Bax)TiO3 thin film, with particular emphasis on (Pb0.5,Ba0.5)TiO3, can be obtained by spin-coating on MgO (100) substrate by using the precursor sol, which was synthesized from acetylacetone chelating with titanium isopropoxide and ethylene glycol as a solvent, in the sol-gel process. Film thickness, pyrolysis temperature and heating rate were studied systemically to investigate their influences on the formation of preferred oriented thin films. The highly preferred (001)/(100) oriented thin film could be obtained by the pyrolysis of wet film at 500 °C and annealing at 600 °C at a slow heating rate of 5 °C/min. It is confirmed that the tetragonal perovskite structure of the titanate ceramic decreases with an increase of Ba content in (Pb1−x,Bax)TiO3. The (001)/(100) oriented films were synthesized from all compositions between x = 0.2 and x = 0.8, at a crystallization temperature of 600 °C. In particular, for the Ba content in the range of x = 0.50.6, highly preferred (001)/(100) planes were observed.  相似文献   
2.
In this work, CuInS2/multiwalled carbon nanotube (MWCNT) layers are fabricated by the sol–gel spin-coating method. We introduce two forms of MWCNTs into a CIS2 solution, washed functional multiwalled carbon nanotubes (W-FMWCNTs) and unwashed-functional multiwalled carbon nanotubes (UW-FMWCNTs), in order to investigate the effects of MWCNTs and an acidic environment on the physical properties of the CIS2 absorber layers. The structure and morphology of the samples are investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The XRD study shows that all samples crystallize in a tetragonal structure. The results obtained from the optical, thermo-electric, and electrical measurements indicate that the two groups of CIS2 layers prepared using W- and UW-FMWCNTs show the opposite behaviors. The Seebeck coefficient (SC) measurements indicate possible formation of a p–n junction.  相似文献   
3.
This paper is concerned with the improvement of dye-sensitized solar cell (DSSC) efficiency upon MgO post-treatment of the TiO2 electrode. A simple sol–gel technique, involving magnesium acetate as precursor, ethanol as solvent and nitric acid as stabilizer, is applied to prepare a solution of suspended MgO nanoparticles. A single drop of MgO sol at 0.1 M precursor concentration was spin-coated at 3000 rpm for 30 s onto the TiO2 electrode and sintered at 500 K for 1 h. Dye-loading using N3-dye was applied for 6 h. An increase in the average efficiency of the DSSC from 2.5% to 3.9% (over 50% enhancement) was recorded. Measurements of the dark IV characteristics, the open circuit voltage decays, the SEM images and the dye absorbance spectra, for both uncoated and MgO-coated electrodes were examined. The improvement of the DSSC efficiency was attributed to an upward shift of the TiO2 flat band energy and a reduction of the rate of back-transport and recombination.  相似文献   
4.
A precise control of the morphology and crystallization of perovskite thin-films is well-correlated to higher perovskite solar cells performances. Ionic liquids (ILs) can retard perovskite crystallization to aid the formation of films with uniform morphology to realize highly efficient perovskite solar cells. Herein, we attempt to control the nanostructural growth of CH3NH3PbI3 thin films by adding ILs to the perovskite spin-coating solution and investigate the effect of IL viscosity on the resulting CH3NH3PbI3 nanoparticle (NP) thin films. NPs with desirable morphology were obtained using ILs with a low viscosity that completely dissolved in the CH3NH3PbI3 solution. In particular, the IL tetrabutylammonium chloride yielded NPs with a diameter of 500 nm and controllable morphology, crystallinity, and absorption behavior, which led to improved photovoltaic performance compared with that of solar cells containing NPs produced using other ILs. Our findings revealed a pathway to obtain uniformly distributed CH3NH3PbI3 NP thin films for use in perovskite solar cells. The developed method is well suited for large-scale production of perovskite thin films on flexible substrates.  相似文献   
5.
In this work, we have presented a spin-coating method to produce thin films started with pure BiCrO_3(BCO) and ended up with BiFeO_3(BFO) by increasing x values in the(BiFeO_3)_x–(BiCrO_3)_(1-x)composites. All the produced thin films have been crystallized at the annealing temperatures of 400 °C for 0.5 h. The XRD and EDAX spectrums give insight that the two crystal phases related to BCO and BFO stayed together within the thin film matrices. SEM analysis showed that the prepared composite had macroporous morphology with interconnected pores and its width(size) decreased with increasing x values. The strong correlations are observed among the microstructure, dielectric, ferroelectric, ferromagnetic properties and Fe concentration. Among all composites, the composition of 0.75 shows an attractive magnetization, polarization, switching and improved dielectric behaviors at room temperature. Significant increase in the multiferroic characteristics of 0.75 composition is due to arise of lower leakage current by causing reduction in oxygen vacancy density, and enhancement of super-exchange magnetic interaction between Fe~(3+) and Cr~(3+) at BFO/BCO interface layers. Our result shows that the thin layer on Pt(111)/Ti/SiO_2/Si substrate possesses simultaneously improved ferroelectric and ferromagnetic properties which make an inaccessible potential application for nonvolatile ferroelectric memories.  相似文献   
6.
《Ceramics International》2015,41(6):7421-7428
The goal of this study was to demonstrate that sol–gel processing route is suitable for the fabrication of calcium hydroxyapatite (Ca10(PO4)6(OH)2, CHA) thin films on Si substrate by spin-coating technique. The substrate was spin-coated by precursor sol solution 1, 5, 15 and 30 times. The samples were annealed after each spin-coating procedure at 1000 °C for 5 h in air. In the sol–gel process ethylendiamintetraacetic acid and 1,2-ethandiol, and triethanolamine and polyvinyl alcohol were used as complexing agents and as gel network forming agents, respectively. The coatings were characterized using X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) and Raman spectroscopies, profilometry and the contact angle measurements (CAM). It was demonstrated, that properties of calcium hydroxyapatite thin films depend on spinning and annealing times.  相似文献   
7.
We applied Er2O3 nanoparticles, P2O5 particles, and spin-on-glass (SOG) solution to form erbium-doped silica thin films exhibiting photoluminescence at 1530 nm. We further investigated the annealing condition and composition of the spin-coated film. The addition of P2O5 improved PL peak intensity of the erbium-doped film fivefold. The weight ratio of Er2O3 nanoparticles to P2O5 particles in the SOG was found to be 0.54 for efficient light emission.  相似文献   
8.
Polymethylmethacrylate (PMMA)-perhydropolysilazane (PHPS) hybrid thin films doped with spiropyran were prepared by spin-coating, which were then converted into 0.26-1.7 μm thick, spiropyran-doped PMMA-silica hybrid films by exposure treatment over aqueous ammonia. The spiropyran/(spiropyran + PHPS + PMMA) mass ratio was fixed at a high value of 0.2 so that the films exhibit visual photochromic changes in color, while the PMMA/(PMMA + PHPS) mass ratio, r, was varied. The spiropyran molecules in the as-prepared films were in merocyanine (MC) and spiro (SP) forms, with and without an optical absorption at 500 nm, at low (r ≤ 0.2) and high (r ≥ 0.4) PMMA contents, respectively. When PMMA content r was increased from 0 to 0.2, the degree of the MC-to-SP conversion on vis light illumination was enhanced, while at higher r's the spiropyran molecules underwent photodegradation. When the silica film (r = 0) was soaked in xylene under vis light, the spiropyran molecules were almost totally leached out, while not on soaking in the dark. On the other hand, no leaching occurred for the film of r = 0.2 either in the presence or absence of vis light. These suggest that the introduction of PMMA is effective in improving the chemical durability of the films, while the silica film (r = 0) is an interesting material with a photoresponsive controlled-release ability. The pencil hardness of the films decreased with increasing PMMA content, but remained over 9H at r ≤ 0.4.  相似文献   
9.
二氧化钛超微粒薄膜的制备及其光电性能研究   总被引:3,自引:0,他引:3  
用钛酸四丁酯制备二氧化钛胶体,利用旋涂法形成透明的二氧化钛薄膜,并研究了电话号码民膜的因素。结果表明表面活性剂能够改善膜的均匀度和增大薄膜的表面粗糙度。光电性能测试发现薄膜厚度、薄膜表面粗糙度、烧结温度以及烧结时间等是影响二氧化钛薄膜光电性能的重要因素。利用份菁作敏化剂,敏化后二氧化钛薄膜的光电性能得到很大的改善。  相似文献   
10.
In this study, we developed an immobilized TiO2 semiconductor on an ITO glass substrate (TiO2/ITO) and investigated its photocatalytic and electrochemical performance. The TiO2/ITO samples were prepared via a spin-coating process followed by calcination and were used for the photocatalytic or electrochemical degradation of an organic dye pollutant. The measured photocatalytic performance was comparable to that reported in previous publications; however, a remarkable result was obtained in our electrochemical system. The formation of hydroxyl radicals (OH) strongly dominated the electrochemical system, which resulted in outstanding degradation performance. Therefore, we propose a commercializable photoelectrochemical system that can maximize the degradation of pollutants in wastewater treatment plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号