首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   1篇
  国内免费   1篇
化学工业   85篇
金属工艺   17篇
机械仪表   25篇
能源动力   2篇
无线电   3篇
一般工业技术   12篇
原子能技术   1篇
自动化技术   6篇
  2023年   10篇
  2022年   18篇
  2021年   20篇
  2020年   13篇
  2019年   7篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   2篇
  2013年   9篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   8篇
  2006年   11篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
排序方式: 共有151条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(15):21600-21609
Stereolithography (SL) shows advantages for preparing alumina-based ceramics with complex structures. The effects of the particle size distribution, which strongly influence the sintering properties in ceramic SL, have not been systematically explored until now. Herein, the influence of the particle size distribution on SL-manufactured alumina ceramics was investigated, including bending strength at room temperature, post-sintering shrinkage, porosity, and microstructural morphology. Seven particle size distributions of alumina ceramics were studied (in μm/μm: 30/5, 20/3, 10/2, 5/2, 5/0.8, 3/0.5, and 2/0.3); a coarse:fine particle ratio of 6:4 was maintained. At the same sintering temperature, the degree of sintering was greater for finer particle sizes. The particle size distribution had a larger influence on flexural strength, porosity and shrinkage than sintering temperature when the particle size distribution difference reached 10-fold but was weaker for 10 μm/2 μm, 5 μm/2 μm and 5 μm/0.8 μm. The sintering shrinkage characteristics of cuboid samples with different particle sizes were studied. The use of coarse particles influenced the accuracy of small-scale samples. When the particle size was comparable to the sample width, such as 30 μm/5 μm and 5 mm, the width shrinkage was consistent with the height shrinkage. When the particle size was much smaller than the sample width, such as 2 μm/0.3 μm and 5 mm, the width shrinkage was consistent with the length shrinkage. The results of this study provide meaningful guidance for future research on applications of SL and precise control of alumina ceramics through particle gradation.  相似文献   
2.
In this study, silica based slurries for stereolithographic printing of glass structures are developed and characterized. Stereolithography has the potential to print complex structures with high resolution. Therefore, acrylate based photocurable slurries have been developed and their viscosities are examined as a function of the solid loading. A critical shear rate can be derived, which must not be exceeded during the printing process. Therefore, rheological characterizations provide important insights into the printing process and the ability to produce samples with precise structures. Other properties such as polymerization time and curability kinetic were investigated with time dependent attenuated total reflection infrared spectroscopy (ATR-IR). Afterwards, the slurries were printed on a commercial printer operating with visible light. For debinding the printed green bodies, the decomposition temperatures were derived from thermogravimetric analysis in order to obtain stable and transparent samples.  相似文献   
3.
Stereolithography (SL) tooling for plastic injection moulding provides a low cost and quick alternative to hard tooling methods when producing a small quantity of parts. However, work by the authors has shown that a different rate of polymer shrinkage was experienced in semi-crystalline parts when produced from SL moulds as compared to those from conventional metal tooling methods. Different shrinkage means the parts are not truly the same as those that would be produced by metal tooling and highlights a disadvantage to SL tooling.This work associates the increased shrinkage experienced to a greater percentage crystallinity developed in the parts due to their thermal history during processing. In these experiments the cooling rate, which is imparted due to the heat transfer characteristics of the mould has been identified as the controlling factor of a parts % crystalline content and the cause of shrinkage anomalies.The morphology analysis results show that there is 30% more crystallinity developed in the nylon (PA66) parts produced in SL moulds than those produced from aluminium moulds. The results also reveal different characteristics during thermal analysis that may also be due to the thermal history imparted by the mould.The work utilises the thermal analysis technique differential scanning calorimetry (DSC) to quantify the different levels of crystallinity in the parts. The thermal characteristics of the mould are demonstrated by real-time data acquisition.  相似文献   
4.
Organically modified nanofillers, including nano SiO2, montmorillonite and attapulgite were loaded to stereolithography resin (SLR). The surface of nanofillers were modified using organic modifier of 3-(trimethoxysilyl)propyl methacrylate (γ-MPS) and (1-hexadecyl)dimethyl allyl ammonium chloride (C16-DMAAC), and were characterized by FTIR and small angle XRD analysis. The morphology of nanocomposites were observed by TEM. Viscosity and curing speed of SLR nanocomposites at increasing nanofillers loading were also studied. The mechanical properties of printed samples fabricated by a home-made stereolithography apparatus (SLA) 3D printer were tested. The influence of nanoparticles on the accuracy was measured and discussed. It was found that addition of 5% w/w of nano SiO2 increased the tensile strength and modulus by 20.6% and 65.1% respectively, and the printed accuracy was not significantly influenced. This study opens the way to the application of nanocomposites in the desktop level SLA 3D printing.  相似文献   
5.
《Ceramics International》2022,48(5):6266-6276
Porous diatomite ceramics with hierarchical pores and high apparent porosity (50.29–56%) were successfully fabricated via direct stereolithography. The pre-ball-milling time, dispersant type and dispersant concentration were systematically investigated to prepare diatomite pastes with high solid loading, low viscosity and a self-supporting effect. The results showed that a pre-ball-milling time of 24 h was more suitable to prepare diatomite pastes with high solid loading, and Span80 at 2 wt% was the optimal dispersant to obtain 40 vol% diatomite paste with a low viscosity and a self-supporting effect. To restrain the formation of defects, a heating rate as low as 0.2 °C/min was allowed to control the pyrolysis rate in the multistage debinding process. At sintering temperatures ranging from 900 °C to 1000 °C, porous diatomite ceramics exhibited a typical bimodal porosity, high apparent porosity and great flexural strength.  相似文献   
6.
It is highly challenging to fabricate bioceramic scaffolds mimicking architecture and mechanical strength of cancellous bone. Gyroid structure, which is based on triply periodic minimal surface, highly resembles the architecture of cancellous bone. Herein, β-tricalcium phosphate (β-TCP) bioceramic scaffolds with gyroid structure were fabricated by stereolithography (SLA) 3D printing. The SLA 3D printing ensured high precision of ceramic part. The porosity (51–87%), pore size (250 – 2400 µm), pore wall thickness (< 300 µm) and compressive strength (0.6 – 16.8 MPa) of gyroid bioceramic scaffolds were readily adjusted to match various sites of cancellous bone. The gyroid bioceramic scaffolds were more favorable for cell proliferation than the grid-like bioceramic scaffolds. The cancellous-bone-mimicking gyroid bioceramic scaffolds with tunable architecture and mechanical strength were expected to efficiently repair the target bone defects.  相似文献   
7.
光固化成形是一种基于逐层累加方式发展起来的新的制作工艺,零件的加工效率是成形中需要考虑的关键问题之一。本文分析了影响加工效率的三个因素,即扫描参数、制作方向和扫描方向,并通过实验证明了优化制作工艺能够显著提高零件的制作效率。  相似文献   
8.
研究一种基于光固化快速成形技术的人工骨支架制备方法。设计空间结构的人工骨支架负型,利用立体光固化快速成形系统制造人工骨支架负型树脂原型,在人工骨支架负型树脂原型中填充β-磷酸三钙,通过热分解的方法去除SL原型,获得生物活性人工骨支架。研究了烧结与去除原型的方法,测得人工骨支架表面粗糙度分别是Ra=3.69,有利于细胞的黏附。进行体外细胞培养研究,发现成骨细胞能够在这人工骨支架上黏附生长,并向微管内生长,具有良好的生物学特性。  相似文献   
9.
《Ceramics International》2020,46(2):2063-2071
Photocurable gray-colored Si3N4 ceramic slurry with high solid loading, suitable viscosity and high curing depth is critical to fabricate dense ceramic parts with complex shape and high surface precision by stereolithography technology. In the present study, Si3N4 ceramic slurry with suitable viscosity, high solid loading (45 vol %) and curing depth of 50 μm was prepared successfully when surface modifier KH560 (1 wt%) and dispersant Darvan (1 wt%) were used. The slurry exhibits the shear thinning behavior. Based on the Beer-Lambert formula, Dp (the attenuation length) and Ec (the critical energy dose) of Si3N4 ceramic slurry with solid loading of 45 vol % were derived as 0.032 mm and 0.177 mJ/mm2, respectively. Si3N4 ceramic green parts with complex shape and high surface precision were successfully fabricated by stereolithography technology. After optimizing the debinding and sintering process for green parts, dense Si3N4 ceramics with 3.28 g/cm3 sintering density were fabricated. The microhardness and fracture toughness of as-sintered Si3N4 ceramics are ~14.63 GPa and ~5.82 MPa m1/2, respectively, which are comparable to those of the samples by traditional dry-pressed and pressureless sintering technology. These results show that ceramic stereolithography technology could be promising to fabricate high performance ceramics, especially for gray-colored monolithic Si3N4 ceramics.  相似文献   
10.
宗学文  刘洁  权坤  周升栋 《塑料工业》2020,(3):78-81,88
在光固化光敏树脂成型过程中,聚四氟乙烯离型膜会在树脂液位的波动影响下发生变形,进而影响光固化制件的精度,因此需要减小离型膜在制件过程的变形量,确保其相对稳定。首先分析树脂液位变化,通过液位变化量,等效出树脂液波动带给离型膜的载荷,建立离型膜受力模型。然后基于离型薄膜的挠度变形理论,应用Ansys软件进行模拟研究,对不施加预应力和施加不同预应力作用下的离型膜变形结果分析,结果表明施加预应力有利于提高离型膜稳定性,且施加预应力为2. 645M Pa时离型膜受到树脂波动影响最小,位置精度变化在0. 01 mm。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号