首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7736篇
  免费   886篇
  国内免费   183篇
电工技术   32篇
综合类   312篇
化学工业   6066篇
金属工艺   133篇
机械仪表   45篇
建筑科学   31篇
矿业工程   70篇
能源动力   327篇
轻工业   264篇
水利工程   5篇
石油天然气   611篇
武器工业   29篇
无线电   177篇
一般工业技术   519篇
冶金工业   113篇
原子能技术   47篇
自动化技术   24篇
  2024年   21篇
  2023年   175篇
  2022年   214篇
  2021年   279篇
  2020年   291篇
  2019年   279篇
  2018年   229篇
  2017年   212篇
  2016年   371篇
  2015年   336篇
  2014年   344篇
  2013年   395篇
  2012年   429篇
  2011年   474篇
  2010年   360篇
  2009年   472篇
  2008年   433篇
  2007年   452篇
  2006年   397篇
  2005年   415篇
  2004年   331篇
  2003年   305篇
  2002年   294篇
  2001年   259篇
  2000年   191篇
  1999年   176篇
  1998年   117篇
  1997年   80篇
  1996年   79篇
  1995年   56篇
  1994年   52篇
  1993年   36篇
  1992年   33篇
  1991年   30篇
  1990年   25篇
  1989年   16篇
  1988年   14篇
  1987年   19篇
  1986年   10篇
  1985年   21篇
  1984年   24篇
  1983年   27篇
  1982年   20篇
  1981年   1篇
  1951年   11篇
排序方式: 共有8805条查询结果,搜索用时 31 毫秒
1.
2.
The development of electrocatalysts with high activity and durability for oxygen reduction reaction (ORR) in acidic electrolyte environments remains a serious challenge for clean and efficient energy conversion. Synergistic effects between Pt and inexpensive metals, the d band center of Pt and catalyst morphology could adjust the adsorption and desorption of oxygen intermediates by the Pt. All the factors affect the catalytic performance of Pt-based nanocrystals. Here, we prepared Cu@PtCu3 NWs with an average diameter of 74.9 nm for Cu and about 10 nm PtCu3 layer. After etching, the Cu@PtCu3 nanowires is transformed into PtCu nanotube structure, due to the removal of copper from the surface and interior. PtCu NTs for ORR shows excellent activities and durability due to the integration of structural advantages and synergistic effects. Notably, the mass activity and specific activity of PtCu NTs (0.105 A mg?1Pt and 0.230 mA cm?2Pt) are 2.0 and 3.8 times higher than that of commercial Pt/C (0.053 A mg?1Pt and 0.06 mA cm?2Pt). The etching process to change the morphology of the catalyst and alter the electronic structure of the catalyst is expected to be useful for the design of future structured Pt-based alloy nanocatalysts.  相似文献   
3.
Individually, photoredox catalysis (PC) and photodynamic therapy (PDT) are well-established concepts that have experienced a remarkable resurgence in recent years, leading to significant progress in organic synthesis for PC and clinical approval of anticancer drugs for PDT. But, very recently, new photoredox catalyst systems based on Ir(III) and Ru(II) complexes have garnered significant interest because they can simultaneously be used as PDT agents apart from their demonstrated PC activity. This highlight discusses the unique PC behavior of emerging Ir(III)- and Ru(II)-based systems while also examining their potential PDT activity in cancer treatment.  相似文献   
4.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
5.
6.
N-K2Ti4O9/MIL-101 composites were successfully synthesized by a facile hydrothermal method, and were characterized by powder X-ray diffraction, UV–vis diffuse reflectance spectroscopy, the valence band X-ray photoelectron spectroscopy, field emission transmission electron microscopy, photoluminescence emission spectra, N2 adsorption–desorption and thermogravimetric analysis. Photocatalytic activities of N-K2Ti4O9, MIL-101 and the composites were investigated by the degradation of Rhodamine B (RhB) under visible light irradiation. The results show that the composites exhibit higher photocatalytic activity as compared with the pure materials. The synergistically enhanced photocatalytic activity of the composites is due to big adsorption capacity of MIL-101 and high separation efficiency of photogenerated electron-hole pairs through interfaces between N-K2Ti4O9 and MIL-101.  相似文献   
7.
8.
The degree of rate control (DRC) quantitatively identifies the kinetically relevant (sometimes known as rate-limiting) steps of a complex reaction network. This concept relies on derivatives which are commonly implemented numerically, for example, with finite differences (FDs). Numerical derivatives are tedious to implement, and can be problematic, and unstable or unreliable. In this study, we demonstrate the use of automatic differentiation (AD) in the evaluation of the DRC. AD libraries are increasingly available through modern machine learning frameworks. Compared with the FDs, AD provides solutions with higher accuracy with lower computational cost. We demonstrate applications in steady-state and transient kinetics. Furthermore, we illustrate a hybrid local-global sensitivity analysis method, the distributed evaluation of local sensitivity analysis, to assess the importance of kinetic parameters over an uncertain space. This method also benefits from AD to obtain high-quality results efficiently.  相似文献   
9.
《Ceramics International》2022,48(18):26233-26247
A new type of 3D-printable ‘one-part’ geopolymer was synthesized with fly ash (FA), granulated blast furnace slag (GBFS), steel slag (SS) and flue gas desulfurization gypsum (FGD). The effects of SS content (0–40%) on the rheological properties, 3D-printability, mechanical anisotropy and reaction kinetics of geopolymer were investigated. The yield stress and plastic viscosity monotonically decreased with the increasing SS content. Contrarily, the geopolymer with 10% of SS presented better extrudability, buildability and mechanical strength than those with 0, 20%, 30% and 40% of SS. This was mainly attributed to the conflicting influence of SS on geopolymerization, of which the OH? produced by hydration of SS raised the alkalinity of the reaction system and accelerated the dissolution of SiO44? and AlO45?, while the low reactivity prohibited the following polymerization process. Furthermore, the 3D-printed geopolymer presented more compact microstructure and less mechanical anisotropy thanks to the crosslinking of morphologically complementary products, including N(C)-A-S-H, C–S–H, AFt and CH, formed via synergistic reaction of FA-GBFS-SS-FGD system.  相似文献   
10.
《Ceramics International》2021,47(20):28338-28347
Transition metal oxides have been explored in supercapacitor applications owing to their safety, low cost, high specific capacitance and high electrochemical activity. Among all transition metal oxides, zinc oxide based materials show remarkable response for designing the supercapacitors with high electrochemical activity. Here in, Mn doped ZnO (Zn1-xMnxO3 with x = 0, 0.25, 0.50, 0.75 and 1) was synthesized by a facile hydrothermal method. Doping of Mn into the ZnO increased the surface area and decease the charge transfer resistance for the Zn0.5Mn0.5O3. All the synthesized materials were characterized by x-ray diffraction (XRD), scanning electron microscopy SEM), BET, electrochemical tests and other various analytical techniques to confirm the structural, morphological, textural and suprcapacitive properties. The synthesized material Zn0.5Mn0.5O3 having the porous nanoribons structure with BET surface area (2490 cm2/g). The electrochemical studies showed significantly enhanced response toward pseudocapacitive nature. The synthesized material exhibited the excellent specific capacitance (515F/g), specific energy (28.61 Wh/kg) and specific power (1000 W/kg) at current density of 2 mA/g. Such impressive and superior properties make the MnZnO3 material as promising candidate for new generation supercapacitor applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号