首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1671篇
  免费   186篇
  国内免费   141篇
电工技术   12篇
综合类   53篇
化学工业   838篇
金属工艺   73篇
机械仪表   63篇
建筑科学   50篇
矿业工程   10篇
能源动力   65篇
轻工业   522篇
水利工程   5篇
石油天然气   107篇
武器工业   5篇
无线电   31篇
一般工业技术   55篇
冶金工业   25篇
原子能技术   13篇
自动化技术   71篇
  2024年   23篇
  2023年   89篇
  2022年   339篇
  2021年   308篇
  2020年   90篇
  2019年   90篇
  2018年   91篇
  2017年   68篇
  2016年   73篇
  2015年   66篇
  2014年   68篇
  2013年   107篇
  2012年   86篇
  2011年   86篇
  2010年   43篇
  2009年   59篇
  2008年   61篇
  2007年   40篇
  2006年   38篇
  2005年   34篇
  2004年   26篇
  2003年   31篇
  2002年   20篇
  2001年   10篇
  2000年   9篇
  1999年   8篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   9篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1981年   3篇
排序方式: 共有1998条查询结果,搜索用时 12 毫秒
1.
Obesity and hyperlipidemia are major risk factors for developing vascular diseases. Bee bread (BB) has been reported to exhibit some biological actions, including anti-obesity and anti-hyperlipidemic. This study aims to investigate whether bee bread can ameliorate vascular inflammation and impaired vasorelaxation activity through eNOS/NO/cGMP pathway in obese rats. Forty male Sprague-Dawley rats were randomly divided into four groups (n = 10/group), namely: control (normal group), obese rats (OB group), obese rats treated with bee bread (0.5 g/kg/day, OB/BB group) and obese rats treated with orlistat (10 mg/kg/day, OB/OR group). The latter three groups were given a high-fat diet (HFD) for 6 weeks to induced obesity before being administered with their respective treatments for another 6 weeks. After 12 weeks of the total experimental period, rats in the OB group demonstrated significantly higher Lee obesity index, lipid profile (total cholesterol, triglyceride, low-density lipoprotein), aortic proinflammatory markers (tumor necrosis factor-α, nuclear factor-κβ), aortic structural damage and impairment in vasorelaxation response to acetylcholine (ACh). Bee bread significantly ameliorated the obesity-induced vascular damage manifested by improvements in the lipid profile, aortic inflammatory markers, and the impaired vasorelaxation activity by significantly enhancing nitric oxide release, promoting endothelial nitric oxide synthase (eNOS) and cyclic guanosine monophosphate (cGMP) immunoexpression. These findings suggest that the administration of bee bread ameliorates the impaired vasorelaxation response to ACh by improving eNOS/NO/cGMP-signaling pathway in obese rats, suggesting its vascular therapeutic role.  相似文献   
2.
Considering the advent of antibiotic resistance, the study of bacterial metabolic behavior stimulated by novel antimicrobial agents becomes a relevant tool to elucidate involved adaptive pathways. Profiling of volatile metabolites was performed to monitor alterations of bacterial metabolism induced by biosynthesized silver nanoparticles (bio-AgNPs). Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae and Proteus mirabilis were isolated from pressure ulcers, and their cultures were prepared in the presence/absence of bio-AgNPs at 12.5, 25 and 50 µg mL−1. Headspace solid phase microextraction associated to gas chromatography–mass spectrometry was the employed analytical platform. At the lower concentration level, the agent promoted positive modulation of products of fermentation routes and bioactive volatiles, indicating an attempt of bacteria to adapt to an ongoing suppression of cellular respiration. Augmented response of aldehydes and other possible products of lipid oxidative cleavage was noticed for increasing levels of bio-AgNPs. The greatest concentration of agent caused a reduction of 44 to 80% in the variety of compounds found in the control samples. Pathway analysis indicated overall inhibition of amino acids and fatty acids routes. The present assessment may provide a deeper understanding of molecular mechanisms of bio-AgNPs and how the metabolic response of bacteria is untangled.  相似文献   
3.
This study aimed to predict the optimal carbon source for higher production of exopolysaccharides (EPS) by Lactobacillus paracasei TD 062, and to evaluate the effect of this carbon source on the production and monosaccharide composition of EPS. We evaluated the EPS production capacity of 20 strains of L. paracasei under the same conditions. We further investigated L. paracasei TD 062, which showed the highest EPS-producing activity (0.609 g/L), by examining the associated biosynthesis pathways for EPS. Genomics revealed that fructose, mannose, trehalose, glucose, galactose, and lactose were carbon sources that L. paracasei TD 062 could use to produce EPS. We identified an EPS synthesis gene cluster that could participate in transport, export, and sugar chain synthesis, and generate 6 sugar nucleotides. Experimental results showed that the sugar content of the EPS produced using fermentation with the optimized carbon source (fructose, mannose, trehalose, glucose, galactose, and lactose) increased by 115%. Furthermore, use of the optimized carbon source changed the monosaccharide content of the associated EPS. The results of enzyme activity measurements showed significant increases in the activity of 2 key enzymes involved in the glycoside synthesis pathway. Our study revealed that optimizing the carbon source provided for fermentation not only increased the production of EPS, but also affected the composition of the monosaccharides by increasing enzyme activity in the underlying synthesis pathways, suggesting an important role for carbon source in the production of EPS by L. paracasei TD 062.  相似文献   
4.
5.
6.
The past decade revealed that cell identity changes, such as dedifferentiation or transdifferentiation, accompany the insulin-producing β-cell decay in most diabetes conditions. Mapping and controlling the mechanisms governing these processes is, thus, extremely valuable for managing the disease progression. Extracellular glucose is known to influence cell identity by impacting the redox balance. Here, we use global proteomics and pathway analysis to map the response of differentiating human pancreatic progenitors to chronically increased in vitro glucose levels. We show that exogenous high glucose levels impact different protein subsets in a concentration-dependent manner. In contrast, regardless of concentration, glucose elicits an antipodal effect on the proteome landscape, inducing both beneficial and detrimental changes in regard to achieving the desired islet cell fingerprint. Furthermore, we identified that only a subgroup of these effects and pathways are regulated by changes in redox balance. Our study highlights a complex effect of exogenous glucose on differentiating pancreas progenitors characterized by a distinct proteome signature.  相似文献   
7.
Bacterial communities associated with roots influence the health and nutrition of the host plant. However, the microbiome discrepancy are not well understood under different healthy conditions. Here, we tested the hypothesis that rhizosphere soil microbial diversity and function varies along a degeneration gradient of poplar, with a focus on plant growth promoting bacteria (PGPB) and antibiotic resistance genes. Comprehensive metagenomic analysis including taxonomic investigation, functional detection, and ARG (antibiotics resistance genes) annotation revealed that available potassium (AK) was correlated with microbial diversity and function. We proposed several microbes, Bradyrhizobium, Sphingomonas, Mesorhizobium, Nocardioides, Variovorax, Gemmatimonadetes, Rhizobacter, Pedosphaera, Candidatus Solibacter, Acidobacterium, and Phenylobacterium, as candidates to reflect the soil fertility and the plant health. The highest abundance of multidrug resistance genes and the four mainly microbial resistance mechanisms (antibiotic efflux, antibiotic target protection, antibiotic target alteration, and antibiotic target replacement) in healthy poplar rhizosphere, corroborated the relationship between soil fertility and microbial activity. This result suggested that healthy rhizosphere soil harbored microbes with a higher capacity and had more complex microbial interaction network to promote plant growing and reduce intracellular levels of antibiotics. Our findings suggested a correlation between the plant degeneration gradient and bacterial communities, and provided insight into the role of high-turnover microbial communities as well as potential PGPB as real-time indicators of forestry soil quality, and demonstrated the inner interaction contributed by the bacterial communities.  相似文献   
8.
9.
Nausea and vomiting are common gastrointestinal complaints that can be triggered by diverse emetic stimuli through central and/or peripheral nervous systems. Both nausea and vomiting are considered as defense mechanisms when threatening toxins/drugs/bacteria/viruses/fungi enter the body either via the enteral (e.g., the gastrointestinal tract) or parenteral routes, including the blood, skin, and respiratory systems. While vomiting is the act of forceful removal of gastrointestinal contents, nausea is believed to be a subjective sensation that is more difficult to study in nonhuman species. In this review, the authors discuss the anatomical structures, neurotransmitters/mediators, and corresponding receptors, as well as intracellular emetic signaling pathways involved in the processes of nausea and vomiting in diverse animal models as well as humans. While blockade of emetic receptors in the prevention of vomiting is fairly well understood, the potential of new classes of antiemetics altering postreceptor signal transduction mechanisms is currently evolving, which is also reviewed. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide potential answers.  相似文献   
10.
Thiosulfate in the form of sodium thiosulfate (STS) is a major oxidation product of hydrogen sulfide (H2S), an endogenous signaling molecule and the third member of the gasotransmitter family. STS is currently used in the clinical treatment of acute cyanide poisoning, cisplatin toxicities in cancer therapy, and calciphylaxis in dialysis patients. Burgeoning evidence show that STS has antioxidant and anti-inflammatory properties, making it a potential therapeutic candidate molecule that can target multiple molecular pathways in various diseases and drug-induced toxicities. This review discusses the biochemical and molecular pathways in the generation of STS from H2S, its clinical usefulness, and potential clinical applications, as well as the molecular mechanisms underlying these clinical applications and a future perspective in kidney transplantation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号