首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24570篇
  免费   2730篇
  国内免费   1056篇
电工技术   661篇
综合类   1538篇
化学工业   10516篇
金属工艺   1297篇
机械仪表   1395篇
建筑科学   1095篇
矿业工程   1001篇
能源动力   1291篇
轻工业   1837篇
水利工程   296篇
石油天然气   1519篇
武器工业   72篇
无线电   989篇
一般工业技术   2361篇
冶金工业   1032篇
原子能技术   515篇
自动化技术   941篇
  2024年   80篇
  2023年   349篇
  2022年   660篇
  2021年   830篇
  2020年   848篇
  2019年   771篇
  2018年   783篇
  2017年   869篇
  2016年   979篇
  2015年   964篇
  2014年   1401篇
  2013年   1639篇
  2012年   1987篇
  2011年   1829篇
  2010年   1361篇
  2009年   1428篇
  2008年   1098篇
  2007年   1511篇
  2006年   1390篇
  2005年   1117篇
  2004年   981篇
  2003年   867篇
  2002年   712篇
  2001年   535篇
  2000年   533篇
  1999年   481篇
  1998年   429篇
  1997年   342篇
  1996年   305篇
  1995年   226篇
  1994年   229篇
  1993年   170篇
  1992年   138篇
  1991年   99篇
  1990年   69篇
  1989年   48篇
  1988年   65篇
  1987年   54篇
  1986年   30篇
  1985年   39篇
  1984年   31篇
  1983年   16篇
  1982年   13篇
  1981年   8篇
  1980年   8篇
  1979年   2篇
  1977年   2篇
  1976年   2篇
  1959年   4篇
  1951年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Metals and alloys forming reversible hydrides with hydrogen gas are potential building blocks for compact, solid state hydrogen storage systems. Based on the materials’ thermodynamic characteristics, their use as temperature-swing gas compression and delivery systems in the hydrogen economy is also possible. Given the wide variety of materials developed and tested at laboratory and pilot scales, a harmonized method of selecting the feasible material(s) for a particular real-life application is required. This study proposes a system selection framework based on a normalized, multi-criteria metric. Using calculated values of multi-criteria metric, multi-criteria screening and ranking of potential materials has been demonstrated for a particular use case. It is found that the alloy TiMn1.52 having value of additive metric between 0.25 and 0.35 represents the best material for a single stage system. The alloy pair CaNi5–Ti1.5CrMn represents the best alternative for a two-stage system with additive metric values between 0.63 and 0.82. Energy and economic characteristics of the metal hydride gas compression and delivery systems are evaluated and compared with an equivalent mechanical compression system producing the same final effect (i.e., delivery of a given quantity of gas at a defined pressure).  相似文献   
2.
The main objective of the present investigation is to conduct the performance, combustion and emission analysis of CI engine operated using hydrogen enriched syngas (pyrolytic gas) and biodiesel (pyrolytic oil) as dual fuel mode condition. Both the pyrolytic oil and syngas is obtained from single feedstock delonix regia fruit pod through pyrolysis process and then pyrolytic oil is converted into biodiesel through esterification. Initially biomass is subjected to thermal degradation at various pyrolysis temperature ranges like 350–600 °C. During the pyrolysis process syngas, pyrolytic oil and char are produced. The syngas is directly used in the CI engine and pyrolytic oil is converted into biodiesel and then used in the CI engine. The pyrolytic oil and syngas is subjected to FTIR and GC/TCD analysis respectively. The syngas analysis confirms the presence of various gases like H2, CH4, CO2, CO and C2H4 in different proportions. The various proportions of the syngas is mainly depending upon the reactor temperature and moisture content in the biomass. The syngas composition varies with increase in the temperature and at 400 °C, higher amount of hydrogen is present and its composition are H2 28.2%, CO is 21.9%, CH4 is 39.1% and other gases in smaller amounts. The biodiesel of B20 and syngas of 8lpm produced from the same feedstock are considered as test sample fuels in the CI engine under dual fuel mode operation to study the performance and emission characteristics. The study reveals that BTE has slight increase than diesel of 1.5% at maximum load. On the another hand emission like CO, HC and smoke are reduced by 15%,25% and 32% respectively at full load condition, whereas NOx emission is increased at all loads in the range of 10–15%. Therefore B20+syngas of 8lpm can be used as an alternative fuel in CI engine without any modification and major products from pyrolysis process with waste biomass is fully used as fuel in the CI engine.  相似文献   
3.
The spongy nickel oxide (SNO) was synthesized the solution combustion method. The SNO was selected as a promoter to boost the catalytic activity of nanoraspberry-like palladium (NRPd) toward electrooxidation of five light fuels (LFs): methanol, ethanol, formaldehyde, formic acid, and ethylene glycol. The X-ray powder diffraction, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy, and field emission scanning electron microscope techniques were used for the materials characterization. In comparison with nonpromoted Pd, the NRPd-SNO electrocatalyst shown an excellent efficiency in parameters like the electrochemical active surface area and anti-CO poisoning behavior. The turnover data and the parameters, including reaction order, activation energy, and the coefficients of electron transfer and diffusion, were evaluated for the each process of LFs electrooxidation. The outcome for NRPd-SNO activity toward LFs electrooxidation was compared to some reported electrodes. The SNO increases the removal of intermediates created in the oxidation of LFs that can poison the surface of palladium catalyst. This is due to the presence of the lattice oxygens in SNO structure and Ni switching between its high and low valances. The compatibility of the adsorption process of LFs on the surface of the NRPd-SNO catalyst with different isotherms was determined by studying the Tafel polarization and calculating the surface coverage.  相似文献   
4.
5.
An ecofriendly and biodegradable porous structure was prepared from drying aqueous foams based on nano fibrillated cellulose (NFC), extracted from softwood pulp by subcritical water/CO2 treatment (SC-NFC). The primary aim of this work was to use the modified SC-NFC as stabilizer for a water-based Pickering emulsion which upon drying, yielded porous cellulosic materials, a good dye adsorbent. In order to exploit the carboxymethylated SC-NFC (CMSC-NFC, with a degree of substitution of 0.35 and a charge density of 649 μeqv/g) as a stabilizer for water-based Pickering emulsion in subsequent step, an optimized quantity of octyl amine (30 mg/g of SC-NFC) was added to make them partially hydrophobic. A series of dry foam structures were prepared by varying the concentrations of treated CMSC-NFCs and 4 wt% was found to be the optimum concentration to yield foam with high porosity (99%) and low density (0.038 g/cc) along with high compression strength (0.24 MPa), superior to the conventionally extracted NFC. The foams were applied to capture as high as 98% of methylene blue dyes, making them a potential green candidate for treating industrial effluent. In addition, the dye adsorption kinetics and isotherms were found to be well suited with second order kinetics and Langmuir isotherm models.  相似文献   
6.
To enhance chemical stability and suppress of aggregation of magnetite nanoparticles (MNPs), which are used as a support for thermoresponsive copolymer immobilization, silica coating of the MNPs is applied via the electrooxidation method. Although the resulting silica coated-MNPs also formed aggregates, the size distribution of the aggregate shifted to smaller size range. Because of that, the surface area available for copolymer immobilization increased approximately 6.7 times at maximum as compared with that of the uncoated MNPs. It contributed to the increase of the amount of the immobilized copolymer on the silica-coated MNPs, which is approximately four times larger than that on the uncoated MNPs. Fe3O4 dissolution test confirmed enhancement of chemical stability of MNPs. The thermoresponsive copolymer immobilized on the silica-coated MNPs shows the ability to recycle Cu(II) ion from Cu(II) containing solution by changing temperature with significantly shorter time than those in other thermoresponsive adsorbents in gel form.  相似文献   
7.
The slight-alkalization of generator internal cooling water (GICW) is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator. CO2 inleakage is increasingly identified as a potential security risk for GICW system. In this paper, the influence of CO2 inleakage on the slight-alkalization of GICW was theoretically discussed. Based on the equilibriums of the CO2-NaOH-H2O system, CO2 inleakage saturation was derived to quantify the amount of the dissolved CO2 in GICW. This parameter can be directly calculated with the measured conductivity and the [Na+] of GICW. The influence of CO2 inleakage on the slight-alkalization conditioning of GICW and the measurement of its water quality parameters were then analyzed. The more severe the inleakage, the narrower the water quality operation ranges of GICW, resulting in the more difficult the slight-alkalization conditioning of GICW. The temperature calibrations of the conductivity and the pH value of GICW show non-linear correlations with the amount of CO2 inleakage and the NaOH dosage. This study provides insights into the influence of CO2 inleakage on the slight-alkalization of GICW, which can serve as the theoretical basis for the actual slight-alkalization when CO2 inleakage occurs.  相似文献   
8.
9.
大型综合室内亲子乐园属于高大空间,设有游乐设施和游戏的特殊性使得对空间的舒适性要求一致,但是送风气流遇阻严重,室内存在较多气流死角,影响室内空气质量和儿童健康。因此其空调设计不仅需要考虑温度、风速的空间均匀度,还要考虑各点的空气龄和PMV-PPD指标。以天津某亲子乐园为研究对象,利用scSTREAM软件对适用于该房间的辐射供冷加新风、置换通风、混合通风三种空调方式的送风效果进行数值模拟分析,从流场的均匀性、人员的热舒适性等方面对模拟结果进行探讨,研究结果表明辐射供冷加新风方式的空间均匀性和PMV指标最佳,混合通风方式的空气龄最小。  相似文献   
10.
本文针对典型高温气冷堆乏燃料厂房在双发商用飞机撞击载荷下的响应及结构完整性开展研究,并探讨结构特性对撞击损伤的影响。对乏燃料厂房及飞机分别建立有限元模型,通过弹体-目标相互作用分析模拟了飞机撞击过程,综合IAEA与NRC的评价准则对乏燃料厂房在飞机撞击下的损伤程度进行评估。数值结果表明:厂房上对应于机身及发动机的撞击位置发生可接受的局部损伤;乏燃料贮存井墙体对于提高构筑物抗飞机撞击能力有重要作用。此外,构筑物外形对损伤有很大影响,圆柱形壳体的抗飞机撞击能力显著强于方形厂房,是核电厂厂房设计的优化方向之一。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号