首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学工业   4篇
金属工艺   1篇
  2023年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Three oleogelator molecules (Triacontane (TC), Stearic acid (SA), and Behenyl Lignocerate (BL)) were studied individually, in pairs, or all together to make an oleogel using triolein as the oil. WAXS, SAXS and USAXS were used to elucidate the solid structures from angstroms to a few micrometers. A two-dimensional mapping of atomic positions for each molecule was carried out to understand the crystalline multilayer structures formed. We assumed that the molecules were rigidly extended and that they underwent no significant (hindered) rotations so that the free energy is determined by the Lennard-Jones interactions of closely packed multilayers. TC molecules were predicted to form a tilt angle of θ t 33 ° , yielding a SAXS line at q 0.194 Å─1, in acceptable agreement with the measured q = 0.181 Å 1 . For SA crystals θ t 33 ° (predicted) yielding a SAXS line at q = 0.150 Å 1 compared to q = 0.159 Å 1 (observed). No mixed crystals were observed for any pair of molecules or when all three were used. USAXS data showed that SA forms large nanocrystals compared to TC and BL. All three combinations of molecular pairs showed basic scatterers smaller or similar to those of individual molecules. The theory presented here, together with the experimental results, showed why no mixed crystals are formed from two or all three molecules. Data from the USAXS region suggested that, when using all three molecules, a more compact fractal structure was obtained, compared with those if one or two of the molecules were used.  相似文献   
2.
Suspension plasma spraying (SPS) allows processing a stabilized suspension of nanometer-sized feedstock particles to form thick (from 20 to 100 μm, average values) deposits.The void content and porous network of such deposits are difficult to quantify (in terms of void and size distributions, anisotropy, etc.) using conventional techniques due to their low resolution. The combination of ultra-small-angle X-ray scattering (USAXS) and helium pycnometry permits to address some of the characteristics of this void network.Deposits of yttria-partially stabilized zirconia (YSZ) were manufactured by plasma spraying a suspension made of solid sub-micrometer-sized particles (50 and 400 nm) with several sets of spray operating parameters. Results indicate that the average void size exhibits the same scale as the solid structure; i.e., nanometer sizes and multimodal size distribution which varies with spray operating parameters. About 90% of voids (by number) exhibit characteristic dimensions smaller than 40 nm. The cumulative void volume fraction of such as-sprayed deposits varies between about 13 and 20%, depending upon operating parameters. The void network architecture evolves also with annealing conditions: the void size distribution evolves toward higher void characteristic dimensions as a result of sintering of smallest voids but the cumulative void content does not decrease significantly.  相似文献   
3.
4.
TATB (1,3,5 triamino‐2,4,6‐trinitrobenzene), an extremely insensitive explosive, is used both in polymer‐bound explosives (PBXs) and as an ultra‐fine pressed powder (UFTATB). Many TATB‐based explosives, including LX‐17, a mixture of TATB and Kel‐F 800 binder, experience an irreversible expansion with temperature cycling known as ratchet growth. Additional voids, with sizes hundreds of nanometers to a few micrometers, account for much of the volume expansion. Measuring these voids is important feedback for hot‐spot theory and for determining the relationship between void size distributions and detonation properties. Also, understanding mechanisms for ratchet growth allows future choice of explosive/binder mixtures to minimize these types of changes, further extending PBX shelf life. This paper presents the void size distributions of LX‐17, UFTATB, and PBXs using commercially available Cytop M, Cytop A, and Hyflon AD60 binders during temperature cycling between −55 and 70 °C. These void size distributions are derived from ultra‐small‐angle X‐ray scattering (USAXS), a technique sensitive to structures from about 2 nm to about 2 μm. Structures with these sizes do not appreciably change in UFTATB. Compared to TATB/Kel‐F 800, Cytop M and Cytop A show relatively small increases in void volume from 0.9 to 1.3% and 0.6 to 1.1%, respectively, while Hyflon fails to prevent irreversible volume expansion (1.2–4.6%). Computational mesoscale models combined with experimental results indicate both high glass transition temperature as well as TATB binder adhesion and wetting are important to minimize ratchet growth.  相似文献   
5.
Plasma spray coatings for producing next-generation supported membranes   总被引:1,自引:0,他引:1  
Ceramic systems as membranes play a critical role in synthesis gas production as well as gas separation technologies. This paper presents, the potential for thermal spray technology in natural gas-related programs, with a special emphasis on the production of ceramic membranes for oxygen gas separation processes. Yttria-stabilized zirconia (YSZ) coatings were deposited under different environments (air and vacuum) resulting in altered pore and crack distributions introduced during the spray process. We report on the characterization of these coatings using small-angle neutron scattering (SANS) and ultrasmall-angle X-ray scattering (USAXS) to explain the different pore structures observed for the two coating conditions. A quantitative representation of the microstructural features in these coatings is presented in terms of porosity, anisotropic void surface area and pore size distribution. Also, thermal and mechanical properties, complemented with impedance spectroscopy measurements, help understand coating behavior. Such comprehensive characterization, coupled with property measurements of the coatings, successfully demonstrates the potential of thermal spray technology in membrane production.*To whom correspondence should be addressed. E-mail: hherman@ms.cc.sunysb.edu  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号