首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45221篇
  免费   3554篇
  国内免费   2304篇
电工技术   3050篇
技术理论   1篇
综合类   4503篇
化学工业   6524篇
金属工艺   3848篇
机械仪表   2840篇
建筑科学   5280篇
矿业工程   2399篇
能源动力   2395篇
轻工业   2342篇
水利工程   1328篇
石油天然气   3900篇
武器工业   337篇
无线电   2235篇
一般工业技术   2970篇
冶金工业   2884篇
原子能技术   565篇
自动化技术   3678篇
  2024年   157篇
  2023年   488篇
  2022年   916篇
  2021年   1132篇
  2020年   1146篇
  2019年   978篇
  2018年   887篇
  2017年   1151篇
  2016年   1339篇
  2015年   1440篇
  2014年   2485篇
  2013年   2354篇
  2012年   3046篇
  2011年   3381篇
  2010年   2557篇
  2009年   2774篇
  2008年   2501篇
  2007年   3116篇
  2006年   2956篇
  2005年   2606篇
  2004年   2244篇
  2003年   1988篇
  2002年   1678篇
  2001年   1511篇
  2000年   1165篇
  1999年   1009篇
  1998年   726篇
  1997年   690篇
  1996年   571篇
  1995年   471篇
  1994年   360篇
  1993年   255篇
  1992年   216篇
  1991年   164篇
  1990年   127篇
  1989年   116篇
  1988年   85篇
  1987年   73篇
  1986年   38篇
  1985年   25篇
  1984年   32篇
  1983年   24篇
  1982年   11篇
  1981年   19篇
  1980年   21篇
  1979年   9篇
  1977年   4篇
  1976年   4篇
  1975年   6篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
1.
Due to the demand of miniaturization and integration for ceramic capacitors in electronic components market, TiO2-based ceramics with colossal permittivity has become a research hotspot in recent years. In this work, we report that Ag+/Nb5+ co-doped (Ag1/4Nb3/4)xTi1−xO2 (ANTOx) ceramics with colossal permittivity over a wide frequency and temperature range were successfully prepared by a traditional solid–state method. Notably, compositions of ANTO0.005 and ANTO0.01 respectively exhibit both low dielectric loss (0.040 and 0.050 at 1 kHz), high dielectric permittivity (9.2 × 103 and 1.6 × 104 at 1 kHz), and good thermal stability, which satisfy the requirements for the temperature range of application of X9R and X8R ceramic capacitors, respectively. The origin of the dielectric behavior was attributed to five dielectric relaxation phenomena, i.e., localized carriers' hopping, electron–pinned defect–dipoles, interfacial polarization, and oxygen vacancies ionization and diffusion, as suggested by dielectric temperature spectra and valence state analysis via XPS; wherein, electron-pinned defect–dipoles and internal barrier layer capacitance are believed to be the main causes for the giant dielectric permittivity in ANTOx ceramics.  相似文献   
2.
Garzan oil field is located at the south east of Turkey. It is a mature oil field and the reservoir is fractured carbonate reservoir. After producing about 1% original oil in place (OOIP) reservoir pressure started to decline. Waterflooding was started in order to support reservoir pressure and also to enhance oil production in 1960. Waterflooding improved the oil recovery but after years of flooding water breakthrough at the production wells was observed. This increased the water/oil ratio at the production wells. In order to enhance oil recovery again different techniques were investigated. Chemical enhanced oil recovery (EOR) methods are gaining attention all over the world for oil recovery. Surfactant injection is an effective way for interfacial tension (IFT) reduction and wettability reversal. In this study, 31 different types of chemicals were studied to specify the effects on oil production. This paper presents solubility of surfactants in brine, IFT and contact angle measurements, imbibition tests, and lastly core flooding experiments. Most of the chemicals were incompatible with Garzan formation water, which has high divalent ion concentration. In this case, the usage of 2-propanol as co-surfactant yielded successful results for stability of the selected chemical solutions. The results of the wettability test indicated that both tested cationic and anionic surfactants altered the wettability of the carbonate rock from oil-wet to intermediate-wet. The maximum oil recovery by imbibition test was reached when core was exposed 1-ethly ionic liquid after imbibition in formation water. Also, after core flooding test, it is concluded that considerable amount of oil can be recovered from Garzan reservoir by waterflooding alone if adverse effects of natural fractures could be eliminated.  相似文献   
3.
Diffusers are widely-used to quickly dilute effluents in receiving water bodies. This study proposed a novel diffuser that pre-mixes effluent with ambient water before discharging and that uses the swirling jet to further enhance near-field dilution. The nozzle of the diffuser was examined in two ambient flow conditions: co-flow and counter-flow that are commonly-met in the environment such as oceans due to tidal effect. Physical experiments were first conducted in co-flow on its dilution performance and hydrodynamics, using heated water as the effluent. A 3-D CFD model was developed and calibrated the co-flow scenarios, and then used to investigate the diffuser in counter-flow. The results showed that the nozzle can effectively reduce the maximum temperature rise of the effluent by about 50 % before discharging. The swirling jet from the outlet has a larger shear area, half-width and entrainment rate, enabling the effluent to be rapidly diluted to a minimum of around 10 times at x/D = 6 in co-flow, whereas the dilution for conventional nozzles is about 1 because of the potential core. The flow amplification ratio (α) decreases gradually with increasing velocity ratio in co-flow but increases with increasing velocity ratio in counter-flow. The counter-flow reduces the water drawn into the device; however, the pre-dilution effect at the outlet remains stable. The near-field dilution in counter-flow was significantly enhanced than that in co-flow. Environmental regulations at outfalls and mixing zones can be more easily met using this novel diffuser.  相似文献   
4.
Today, utility meters for water are tested for measurement behavior at stable operating conditions at specified flow rates as part of the approval process. The measurement error that occurs during start and stop or when changing between flow rates may not be taken into account. In addition, there are new technologies whose measuring behavior under real-world conditions is only known to a limited extend. To take these facts into account, a new method has been developed and tested to determine the measurement behavior of water meters under dynamic load profiles as they occur in the real application. For this purpose, a test rig for flow rate measurement was extended by a cavitation nozzle apparatus and the generation of dynamic load profiles was validated. For the cavitation nozzles used, possible factors influencing the flow rate, such as temperature and purity of the water as well as the upstream pressure were investigated. Using different types of domestic water meters, the applicability of the dynamic test procedure was demonstrated and the measurement behavior of the meters was characterised.  相似文献   
5.
A venturi device is commonly used as an integral part of a multiphase flowmeter (MPFM) in real-time oil-gas production monitoring. Partial flow mixing is required by installing the venturi device vertically downstream of a blind tee pipework that conditions the incoming horizontal gas-liquid flow (for an accurate determination of individual phase fraction and flow rate). To study the flow-mixing effect of the blind tee, high-speed video flow visualization of gas-liquid flows has been performed at blind tee and venturi sections by using a purpose-built transparent test rig over a wide range of superficial liquid velocities (0.3–2.4 m/s) and gas volume fractions (10–95%). There is little ‘homogenization’ effect of the blind tee on the incoming intermittent horizontal flow regimes across the tested flow conditions, with the flow remaining intermittent but becoming more axis-symmetric and predictable in the venturi measurement section. A horizontal (blind tee) to vertical (venturi) flow-pattern transition map is proposed based on gas and liquid mass fluxes (weighted by the Baker parameters). Flow patterns can be identified from the mean and variance of a fast electrical capacitance holdup measured at the venturi throat.  相似文献   
6.
Electric nanogenerators that directly convert the energy of moving drops into electrical signals require hydrophobic substrates with a high density of static electric charge that is stable in “harsh environments” created by continued exposure to potentially saline water. The recently proposed charge-trapping electric generators (CTEGs) that rely on stacked inorganic oxide–fluoropolymer (FP) composite electrets charged by homogeneous electrowetting-assisted charge injection (h-EWCI) seem to solve both problems, yet the reasons for this success have remained elusive. Here, systematic measurements at variable oxide and FP thickness, charging voltage, and charging time and thermal annealing up to 230 °C are reported, leading to a consistent model of the charging process. It is found to be controlled by an energy barrier at the water-FP interface, followed by trapping at the FP-oxide interface. Protection by the FP layer prevents charge densities up to −1.7 mC m−2 from degrading and the dielectric strength of SiO2 enables charge decay times up to 48 h at 230 °C, suggesting lifetimes against thermally activated discharging of thousands of years at room temperature. Combining high dielectric strength oxides and weaker FP top coatings with electrically controlled charging provides a new paradigm for developing ultrastable electrets for applications in energy harvesting and beyond.  相似文献   
7.
系统阐述了基准平面垂直断面法在爆破漏斗试验中测量爆破漏斗体积的基本原理,并将隧道激光断面仪应用于金厂河矿1 750 m水平15#采场底部切割巷道爆破漏斗试验爆破漏斗体积测量中。通过与传统体重法等计算法所得漏斗体积分析比较,结果表明基于隧道激光断面仪与3D Mine软件分析的基准平面垂直断面法实用性强、操作方便、结果直观可靠,达到试验预期目的。  相似文献   
8.
The sustainable reduction of greenhouse gas emissions from road transport requires solutions to achieve net-zero carbon dioxide emissions. Therefore, in addition to vehicles with electrified powertrains, such as those implemented in battery electric of fuel cell vehicles, internal combustion engines fueled with e-fuels or biofuels are also under discussion. An e-fuel that has come into focus recently, is hydrogen due to its potential to achieve zero tank-to-wheel and well-to-wheel carbon dioxide emissions when the electrolysis is powered by electricity from renewable sources. Due to the high laminar burning velocity, hydrogen has the potential for engine operation with high cylinder charge dilution by e.g. external exhaust gas recirculation or enleanment, resulting in increased efficiency. On the other hand, the high burning velocity and high adiabatic flame temperatures pose a challenge for engine cooling due to increased heat losses compared to conventional fuels. To further evaluate the use of hydrogen for small passenger car engines, a series production 1 L 3 cylinder gasoline engine provided by Ford Werke GmbH was modified for hydrogen direct injection. The engine was equipped with a high pressure external exhaust gas recirculation system to investigate charge dilution at stoichiometric operation. Due to limitations of the turbocharging system, very lean operation, which can achieve nitrogen oxides raw emissions below 10 ppm, was limited to part load operation below BMEP = 8 bar. Thus, a reduction of the nitrogen oxides emission level at high loads compared to stoichiometric operation was not possible. At stoichiometric operation with external exhaust gas recirculation engine efficiency can be increased significantly. The comparison of stoichiometric hydrogen and gasoline operation shows a reduced indicated efficiency with hydrogen with significant faster combustion of hydrogen at comparable centers of combustion. However, higher boost pressures would allow to achieve even higher indicated efficiencies by charge dilution compared to gasoline engine operation.  相似文献   
9.
简要介绍了组合式超大容积(850m3)水池在水压爆破拆除过程中爆破方案选择、参数选取等方面的经验,并对爆破效果进行了分析,为同类工程施工提供了可借鉴的经验。  相似文献   
10.
The slight-alkalization of generator internal cooling water (GICW) is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator. CO2 inleakage is increasingly identified as a potential security risk for GICW system. In this paper, the influence of CO2 inleakage on the slight-alkalization of GICW was theoretically discussed. Based on the equilibriums of the CO2-NaOH-H2O system, CO2 inleakage saturation was derived to quantify the amount of the dissolved CO2 in GICW. This parameter can be directly calculated with the measured conductivity and the [Na+] of GICW. The influence of CO2 inleakage on the slight-alkalization conditioning of GICW and the measurement of its water quality parameters were then analyzed. The more severe the inleakage, the narrower the water quality operation ranges of GICW, resulting in the more difficult the slight-alkalization conditioning of GICW. The temperature calibrations of the conductivity and the pH value of GICW show non-linear correlations with the amount of CO2 inleakage and the NaOH dosage. This study provides insights into the influence of CO2 inleakage on the slight-alkalization of GICW, which can serve as the theoretical basis for the actual slight-alkalization when CO2 inleakage occurs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号