首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4563篇
  免费   86篇
  国内免费   50篇
电工技术   38篇
综合类   140篇
化学工业   1359篇
金属工艺   300篇
机械仪表   84篇
建筑科学   259篇
矿业工程   221篇
能源动力   524篇
轻工业   422篇
水利工程   16篇
石油天然气   142篇
武器工业   2篇
无线电   98篇
一般工业技术   462篇
冶金工业   367篇
原子能技术   172篇
自动化技术   93篇
  2024年   3篇
  2023年   59篇
  2022年   96篇
  2021年   109篇
  2020年   89篇
  2019年   99篇
  2018年   82篇
  2017年   85篇
  2016年   80篇
  2015年   92篇
  2014年   168篇
  2013年   244篇
  2012年   185篇
  2011年   370篇
  2010年   273篇
  2009年   295篇
  2008年   239篇
  2007年   254篇
  2006年   257篇
  2005年   203篇
  2004年   181篇
  2003年   176篇
  2002年   167篇
  2001年   125篇
  2000年   137篇
  1999年   112篇
  1998年   84篇
  1997年   69篇
  1996年   70篇
  1995年   62篇
  1994年   43篇
  1993年   49篇
  1992年   29篇
  1991年   28篇
  1990年   18篇
  1989年   11篇
  1988年   14篇
  1987年   10篇
  1986年   9篇
  1985年   5篇
  1984年   5篇
  1983年   6篇
  1982年   6篇
  1981年   1篇
排序方式: 共有4699条查询结果,搜索用时 15 毫秒
1.
Waste-to-fuel coupled with carbon capture and storage is forecasted to be an effective way to mitigate the greenhouse gas emissions, reduce the waste sent to landfill and, simultaneously, reduce the dependence of fossil fuels. This study evaluated the techno-economic feasibility of sorption enhanced gasification, which involves in-situ CO2 capture, and benchmarked it with the conventional steam gasification of municipal solid waste for H2 production. The impact of a gate fee and tax levied on the fossil CO2 emissions in economic feasibility was assessed. The results showed that the hydrogen production was enhanced in sorption enhanced gasification, that achieved an optimum H2 production efficiency of 48.7% (T = 650 °C and SBR = 1.8). This was 1.0% points higher than that of the conventional steam gasification (T = 900 °C and SBR = 1.2). However, the total efficiency, which accounts for H2 production and net power output, for sorption enhanced gasification was estimated to be 49.3% (T = 650 °C and SBR = 1.8). This was 4.4% points lower than the figure estimated for the conventional gasification (T = 900 °C and SBR = 1.2). The economic performance assessment showed that the sorption enhanced gasification will result in a significantly higher levelised cost of hydrogen (5.0 €/kg) compared to that estimated for conventional steam gasification (2.7 €/kg). The levelised cost of hydrogen can be reduced to 4.5 €/kg on an introduction of the gate fee of 40.0 €/tMSW. The cost of CO2 avoided was estimated to be 114.9 €/tCO2 (no gate fee and tax levied). However, this value can be reduced to 90.1 €/tCO2 with the introduction of an emission allowance price of 39.6 €/tCO2. Despite better environmental performance, the capital cost of sorption enhanced gasification needs to be reduced for this technology to become competitive with mature gasification technologies.  相似文献   
2.
3.
This paper proposes a novel method combining Pinch Methodology and waste hydrogen recovery, aiming to minimise fresh hydrogen consumption and waste hydrogen discharge. The method of multiple-level resource Pinch Analysis is extended to the level of Total Site Hydrogen Integration by considering fresh hydrogen sources with various quality. Waste hydrogen after Total Site Integration is further regenerated. The technical feasibility and economy of the various purification approaches are considered, demonstrated with a case study of a refinery hydrogen network in a petrochemical industrial park. The results showed that fresh hydrogen usage and waste hydrogen discharge could be reduced by 21.3% and 67.6%. The hydrogen recovery ratio is 95.2%. It has significant economic benefits and a short payback period for Total Site Hydrogen Integration with waste hydrogen purification. The proposed method facilitates the reuse of waste hydrogen before the purification process that incurs an additional environmental footprint. In line with the Circular Economy principles, hydrogen resource is retained in the system as long as possible before discharge.  相似文献   
4.
Watermelon peel residues were used to produce a new biochar by dehydration method. The new biochar has undergone two methods of chemical modification and the effect of this chemical modification on its ability to adsorb Cr(VI) ions from aqueous solution has been investigated. Three biochars, Melon-B, Melon-BO-NH_2 and Melon-BO-TETA, were made from watermelon peel via dehydration with 50% sulfuric acid to give Melon-B followed by oxidation with ozone and amination using ammonium hydroxide to give Melon-BO-NH_2 or Triethylenetetramine(TETA) to give Melon-BO-TETA. The prepared biochars were characterized by BET, BJH,SEM, FT-IR, TGA, DSC and EDAX analyses. The highest removal percentage of Cr(VI) ions was 69% for Melon-B,98% for Melon-BO-NH_2 and 99% for Melon-BO-TETA biochars of 100 mg·L~(-1) Cr(VI) ions initial concentration and 1.0 g·L~(-1) adsorbents dose. The unmodified biochar(Melon-B) and modified biochars(Melon-BO-NH_2 and Melon-BO-TETA) had maximum adsorption capacities(Qm) of 72.46, 123.46, and 333.33 mg·g~(-1), respectively.The amination of biochar reduced the pore size of modified biochar, whereas the surface area was enhanced.The obtained data of isotherm models were tested using different error function equations. The Freundlich,Tempkin and Langmuir isotherm models were best fitted to the experimental data of Melon-B, Melon-BO-NH_2 and Melon-BO-TETA, respectively. The adsorption rate was primarily controlled by pseudo-second–order rate model. Conclusively, the functional groups interactions are important for adsorption mechanisms and expected to control the adsorption process. The adsorption for the Melon-B, Melon-BO-NH_2 and Melon-BO-TETA could be explained for acid–base interaction and hydrogen bonding interaction.  相似文献   
5.
The chromium (Cr) evaporation behavior of several different types of iron (Fe)-based AFA alloys and benchmark Cr2O3-forming Fe-based 310 and Ni-based 625 alloys was investigated for 500 h exposures at 800 °C to 900 °C in air with 10% H2O. The Cr evaporation rates from alumina-forming austenitic (AFA) alloys were ~5 to 35 times lower than that of the Cr2O3-forming alloys depending on alloy and temperature. The Cr evaporation behavior was correlated with extensive characterization of the chemistry and microstructure of the oxide scales, which also revealed a degree of quartz tube Si contamination during the test. Long-term oxidation kinetics were also assessed at 800 to 1000 °C for up to 10,000 h in air with 10% H2O to provide further guidance for SOFC BOP component alloy selection.  相似文献   
6.
使用钡盐法对铬废水处理,对p H值在废水中的初值、反映温度计量结果、重铬酸钾的浓度等,在回收六价铬的影响效果进行了分析。对废水中的六价铬使用了源自吸收的分光光度法回收。经过处理后,废水中的p H为8~9的时候,六价铬的回收在9%。废水中的六价铬随着其浓度不断上升增加。超过10℃的时候,六价铬的反应没有非常大的影响,但是当温度降低到10℃以下的时候,回收率就逐步下降了。经过处理之后,六价铬的浓度达到了0.276 7 mg/L,达到了相关规定的标准。  相似文献   
7.
Basic insulating refractories were fabricated by the pressing route using dead-burned magnesia, pure calcined alumina, expanded perlite, and calcined waste serpentine as starting raw materials in four compositions from F1 to F4. Periclase and forsterite were major phases in F1 and F2 compositions, while spinel was also detected in the XRD patterns of F3 and F4 samples. Quantitative phase analysis showed that F4 sample sintered at 1450?°C has the highest forsterite content among all other samples. On the other hand, it has lower thermal conductivity compared to F1 to F3, and even lower than aluminosilicate IFBs with the same bulk density. It is concluded that forsterite is a highly insulating material, compared to periclase, corundum, periclase-spinel, aluminosilicates, such as mullite, etc.  相似文献   
8.
Biodiesel was prepared from waste cooking oil combined with methanol. The process was performed via transesterification in a microreactor using kettle limescale as a heterogeneous catalyst and various cosolvents under different conditions. n‐Hexane and tetrahydrofuran were selected as cosolvents to investigate fatty acid methyl esters (FAMEs). To optimize the reaction conditions, the main parameters affecting FAME% including reaction temperature, catalyst concentration, oil‐to‐methanol volumetric ratio, and cosolvent‐to‐methanol volumetric ratio were studied via response surface methodology. Under optimal reaction conditions and in the presence of the cosolvents n‐hexane and tetrahydrofuran, high FAME purities were achieved. Considering the experimental results, the limescale catalyst is a unique material, and the cosolvent method can reduce significantly the reaction time and biodiesel production cost.  相似文献   
9.
3G Wideband CDMA systems adopt the Orthogonal Variable Spreading Factor code tree as the channelization codes management for achieving high data rate transmission in personal multimedia communications. It assigns a single channelization code for each accepted connection. Nevertheless, it wastes the system capacity when the required rate is not powers of two of the basic rate. One good solution is to assign multiple codes for each accepted connection but it causes two inevitable drawbacks: long handoff delay and new call setup delay due to high complexity of processing with multiple channelization codes, and high cost of using more number of rake combiners. Especially, long handoff delay may result in more call dropping probability and higher Grade of Service, which will degrade significantly the utilization and revenue of the 3G cellular systems. Therefore, we propose herein an adaptive efficient codes determination algorithm based on the Markov Decision Process analysis approach to reduce the waste rate and reassignments significantly while providing fast handoff. Numerical results demonstrate that the proposed approach yields several advantages, including the lowest GOS, the least waste rate, and the least number of reassignments. Meanwhile, the optimal number of rake combiners is also analyzed in this paper. This research was supported in part by the National Science Council of Taiwan, ROC, under contract NSC-93-2213-E-324-018.  相似文献   
10.
This research is related to a preindustrial pilot scale study of the performance of the simultaneous sewage sludge digestion and metal leaching (SSDML) process for decontamination and stabilization of sewage sludge. Ten batch tests were carried out in two 4?m3 bioreactors under various conditions of operation. Results indicated that the addition of 1.0 to 1.5?g?S0/L, which is the equivalent of approximately 30 to 50?kg?S0 per tons dry sludge, is sufficient to obtain conditions of acidity (pH<2.5) and oxido-reduction potential greater than 500 mV necessary for an effective solubilization of toxic metals. The final average of metal solubilization in the output sludge during the SSDML process varied in the following ranges: 25–78% Cd, 9–32% Cr, 48–100% Cu, 77–99% Mn, 15–53% Ni, 12–47% Pb, and 66–100% Zn. The N, P, and K contents were also preserved in the decontaminated sludge. Moreover, the use of low concentrations of elemental sulfur makes it possible to obtain decontaminated sludge with a low total sulfur content (1.4–1.5% S) compatible with agricultural use. The suspended solids removal calculated for the SSDML process was slightly lower, (2.5±0.4)% volatile suspended solids per day, than those reached using standard aerobic digestion. Finally, the SSDML process was found to be effective in removing bad odors and in the destruction (99–100%) of indicator bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号