首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
综合类   1篇
化学工业   12篇
轻工业   2篇
  2022年   3篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2007年   2篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有15条查询结果,搜索用时 46 毫秒
1.
The reversal of humic matter-induced inhibition of callus growth and metabolism by 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in Pinus laricio. Two forest humic fractions (relative molecular mass (Mr) > 3500), derived from soil under Fagus sylvatica (Fs) and Abies alba (Aa) plantation, were used. Pinus laricio callus was grown for a subculture period (4 weeks) on Basal Murashige and Skoog (MS) medium plus forest humic matters (Fs or Aa), at a concentration of 1 mg C/l, and then was transferred, for an additional four weeks, to a MS medium culture without humic matter, but with different hormones: indole-3-acetic acid (IAA, 2 mg/1) or 2,4-dichlorophenoxyacetic acid (2,4-D, 0.5 mg/1) and/or 6-benzylaminopurine (BAP, 0.25 mg/1). Growth of calluse, glucose, fructose, and sucrose contents, and activities of soluble and bound invertases, glucokinase, phosphoglucose isomerase, aldolase, and pyruvate kinase were monitored. The results show a negative effect of humic fractions on callus growth, due to decreased utilization of glucose and fructose, and decreased activities of glycolytic enzymes. The effects are reversible. Substitution of humic fractions with 2,4-D+BAP or 2,4-D is followed by an increase of glycolytic enzyme activities and, consequently, by the utilization of glucose and fructose that induces a restart of growth. In contrast, the inhibitory effects of humic fractions persist when they are substituted with BAP alone, indicating that only the auxin 2,4-D is capable of reversing the negative effects. A possible competitive action on the auxin-binding site between 2,4-D and the chemical structures in the forest humic fractions is suggested.  相似文献   
2.
The enzyme 4‐oxalocrotonate tautomerase (4‐OT), which catalyzes enol–keto tautomerization as part of a degradative pathway for aromatic hydrocarbons, promiscuously catalyzes various carbon–carbon bond‐forming reactions. These include the aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde. Here, we demonstrate that 4‐OT can be engineered into a more efficient aldolase for this condensation reaction, with a >5000‐fold improvement in catalytic efficiency (kcat/Km) and a >107‐fold change in reaction specificity, by exploring small libraries in which only “hotspots” are varied. The hotspots were identified by systematic mutagenesis (covering each residue), followed by a screen for single mutations that give a strong improvement in the desired aldolase activity. All beneficial mutations were near the active site of 4‐OT, thus underpinning the notion that new catalytic activities of a promiscuous enzyme are more effectively enhanced by mutations close to the active site.  相似文献   
3.
In nature 2-deoxy-D-ribose-5-phosphate aldolase (DERA) catalyses the reversible formation of 2-deoxyribose 5-phosphate from D-glyceraldehyde 3-phosphate and acetaldehyde. In addition, this enzyme can use acetaldehyde as the sole substrate, resulting in a tandem aldol reaction, yielding 2,4,6-trideoxy-D-erythro-hexapyranose, which spontaneously cyclizes. This reaction is very useful for the synthesis of the side chain of statin-type drugs used to decrease cholesterol levels in blood. One of the main challenges in the use of DERA in industrial processes, where high substrate loads are needed to achieve the desired productivity, is its inactivation by high acetaldehyde concentration. In this work, the utility of different variants of Pectobacterium atrosepticum DERA (PaDERA) as whole cell biocatalysts to synthesize 2-deoxyribose 5-phosphate and 2,4,6-trideoxy-D-erythro-hexapyranose was analysed. Under optimized conditions, E. coli BL21 (PaDERA C-His AA C49M) whole cells yields 99 % of both products. Furthermore, this enzyme is able to tolerate 500 mM acetaldehyde in a whole-cell experiment which makes it suitable for industrial applications.  相似文献   
4.
A mutant of D ‐fructose‐6‐phosphate aldolase (FSA) of Escherichia coli, FSA A129S, with improved catalytic efficiency towards dihydroxyacetone (DHA), the donor substrate in aldol addition reactions, was explored for synthetic applications. The kcat/KM value for DHA was 17‐fold higher with FSA A129S than that with FSA wild type (FSA wt). On the other hand, for hydroxyacetone as donor substrate FSA A129S was found to be 3.5‐fold less efficient than FSA wt. Furthermore, FSA A129S also accepted glycolaldehyde (GA) as donor substrate with 3.3‐fold lower affinity than FSA wt. This differential selectivity of both FSA wt and FSA A129S for GA makes them complementary biocatalysts allowing a control over donor and acceptor roles, which is particularly useful in carboligation multi‐step cascade synthesis of polyhydroxylated complex compounds. Production of the mutant protein was also improved for its convenient use in synthesis. Several carbohydrates and nitrocyclitols were efficiently prepared, demonstrating the versatile potential of FSA A129S as biocatalyst in organic synthesis.  相似文献   
5.
桃仁醇腈酶促不对称合成含硅(R)-酮氰醇   总被引:1,自引:0,他引:1  
采用气相色谱手性分析,研究桃仁(R)-醇腈酶催化2-三甲基硅-2-乙酮与丙酮氰醇,在水和有机溶剂双相中不对称合成(R)-2-三甲基硅-2-羟基-丙腈.分析酶添加量、底物浓度、有机溶剂、两相体积比、水相pH值、反应温度及底物结构对桃仁醇腈酶促反应的影响.结果表明,桃仁醇腈酶催化2-三甲基硅-2-乙酮与丙酮氰醇不对称合成的优化反应条件为酶添加量0.6 g左右,底物2-三甲基硅-2-乙酮浓度14 mmol/L,有机溶剂为异丙醚,水相与有机相体积比1.5:10,水相pH=5.0,反应温度30 ℃.在优化反应条件下,反应转化率和产物的对映体过剩值均达99%以上.为探讨底物中硅原子对桃仁醇腈酶促不对称合成的影响,对比研究了桃仁醇腈酶催化碳结构类似物3,3-二甲基-2-丁酮的不对称转化.发现底物2-三甲基硅-2-乙酮中的硅原子对桃仁醇腈酶催化反应有重要影响,桃仁醇腈酶催化2-三甲基硅-2-乙酮反应在底物转化率和产物光学纯度等方面均显著优于其碳结构类似物3,3-二甲基-2-丁酮的相应值.  相似文献   
6.
利用pGEX-KG载体在大肠杆菌BL21(DE3)中重组表达了L-苏氨酸醛缩酶,以4-硝基苯甲醛、甘氨酸为底物酶法合成了L-4-硝基苯基丝氨酸,考察了反应温度、pH、底物摩尔比和甘氨酸浓度对酶活的影响。最佳转化条件为:反应温度45℃,pH=8.0,甘氨酸与4-硝基苯甲醛底物摩尔比5:1,底物甘氨酸最适浓度为500 mmol/L;0.1 g湿细胞菌体在10 mL反应体系中在最佳反应条件下反应24 h,底物4-硝基苯甲醛转化率为43%,产物L-4-硝基苯基丝氨酸达到9.72g/L,总收率为35%。  相似文献   
7.
One- or two-carbon (C1 or C2) compounds have been considered attractive substrates because they are inexpensive and abundant. Methanol and ethanol are representative C1 and C2 compounds, which can be used as bio-renewable platform feedstocks for the biotechnological production of value-added natural chemicals. Methanol-derived formaldehyde and ethanol-derived acetaldehyde can be converted to 3-hydroxypropanal (3-HPA) via aldol condensation. 3-HPA is used in food preservation and as a precursor for 3-hydroxypropionic acid and 1,3-propanediol that are starting materials for manufacturing biocompatible plastic and polytrimethylene terephthalate. In this study, 3-HPA was biosynthesized from formaldehyde and acetaldehyde using deoxyribose-5-phosphate aldolase from Thermotoga maritima (DERATma) and cloned and expressed in Escherichia coli for 3-HPA production. Under optimum conditions, DERATma produced 7 mM 3-HPA from 25 mM substrate (formaldehyde and acetaldehyde) for 60 min with 520 mg/L/h productivity. To demonstrate the one-pot 3-HPA production from methanol and ethanol, we used methanol dehydrogenase from Lysinibacillus xylanilyticus (MDHLx) and DERATma. One-pot 3-HPA production via aldol condensation of formaldehyde and acetaldehyde from methanol and ethanol, respectively, was investigated under optimized reaction conditions. This is the first report on 3-HPA production from inexpensive alcohol substrates (methanol and ethanol) by cascade reaction using DERATma and MDHLx.  相似文献   
8.
A stereochemically promiscuous 2‐keto‐3‐deoxygluconate aldolase has been used as an efficient biocatalyst to catalyse the aldol reaction of pyruvate with C3‐ and C4‐aldoses to afford syn‐ and anti‐3‐deoxy‐2‐ulosonic acids in poor to good de. A continuous flow bioreactor containing immobilised aldolase has been developed that enables gram quantities of C6‐ and C7‐3‐deoxyhept‐2‐ulosonic acids to be produced in an efficient manner.  相似文献   
9.
N‐Acetyl‐D ‐neuraminic acid (Neu5Ac) was efficiently synthesized from lactate and a mixture of N‐acetyl‐D ‐glucosamine (GlcNAc) and N‐acetyl‐D ‐mannosamine (ManNAc) by whole cells. The biotransformation utilized Escherichia coli cells (Neu5Ac aldolase), Pseudomonas stutzeri cells (lactate oxidase components), GlcNAc/ManNAc and lactate. By this process, 18.32±0.56 g/liter Neu5Ac were obtained from 65.61±2.70 g/liter lactate as an initial substrate input. Neu5Ac (98.4±0.4 % purity, 80.87±0.79 % recovery yield) was purified by anionic exchange chromatography. Our results demonstrate that the reported Neu5Ac biosynthetic process can compare favorably with natural product extraction or chemical synthesis processes.  相似文献   
10.
One‐pot multienzymatic reactions have been performed for the synthesis of 1‐deoxy‐D ‐fructose 6‐phosphate, 1,2‐dideoxy‐D ‐arabino‐hept‐3‐ulose 7‐phosphate, D ‐fructose 6‐phosphate and D ‐arabinose 5‐phosphate. The whole synthetic strategy is based on an aldol addition reaction catalysed by fructose‐6‐phosphate aldolase (FSA) as a key step of a three or four enzymes‐catalysed cascade reaction. The four known donors for FSA – dihydroxyacetone (DHA), hydroxyacetone (HA), 1‐hydroxy‐2‐butanone (HB) and glycolaldehyde (GA) – were used with D ‐glyceraldehyde 3‐phosphate as acceptor substrate. The target phosphorylated sugars were obtained in good to excellent yields and high purity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号