首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40626篇
  免费   2765篇
  国内免费   1899篇
电工技术   1889篇
综合类   2599篇
化学工业   9124篇
金属工艺   3426篇
机械仪表   4431篇
建筑科学   2884篇
矿业工程   1335篇
能源动力   2543篇
轻工业   480篇
水利工程   811篇
石油天然气   2201篇
武器工业   354篇
无线电   4228篇
一般工业技术   6027篇
冶金工业   1344篇
原子能技术   512篇
自动化技术   1102篇
  2024年   104篇
  2023年   752篇
  2022年   1082篇
  2021年   1125篇
  2020年   1161篇
  2019年   870篇
  2018年   925篇
  2017年   1097篇
  2016年   1077篇
  2015年   1089篇
  2014年   2089篇
  2013年   1952篇
  2012年   2498篇
  2011年   2993篇
  2010年   2091篇
  2009年   2225篇
  2008年   1999篇
  2007年   2714篇
  2006年   2471篇
  2005年   2136篇
  2004年   1914篇
  2003年   1735篇
  2002年   1556篇
  2001年   1236篇
  2000年   1126篇
  1999年   868篇
  1998年   753篇
  1997年   690篇
  1996年   571篇
  1995年   490篇
  1994年   374篇
  1993年   304篇
  1992年   270篇
  1991年   255篇
  1990年   237篇
  1989年   174篇
  1988年   95篇
  1987年   44篇
  1986年   29篇
  1985年   8篇
  1984年   24篇
  1983年   19篇
  1982年   23篇
  1981年   10篇
  1980年   5篇
  1979年   6篇
  1977年   3篇
  1976年   3篇
  1959年   6篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(12):17086-17094
The composition of polymer derived ceramics could be readily tuned through controlling the structure and element content of the polymer precursors, and investigation on the effect of the element on microstructure evolution is important to the design of advanced ceramics. In this article, the effect of carbon content in SiBCO polymer precursors was systematically investigated. The polymer network and thermal stability of polymer precursors and the carbon content of pyrolyzed SiBCO ceramic could be readily tuned by controlling the DVB amount used. Carbon contributed to the formation of graphitic carbon in SiBCxO ceramics and inhibited the growth of β–SiC and SiO2 crystals at 1600 °C, but lead to an increase in the graphitic carbon phase at 1800 °C.  相似文献   
2.
《Ceramics International》2022,48(15):21773-21780
In this work, Ni/TiC composites were synthesized by the laser cladding technique (LCT). A scanning electron microscope (SEM), X-ray diffractometer (XRD), microhardness meter, electrochemical workstation, and friction and wear tester examined the microstructure, surface morphology, phase structure, microhardness, wear, and corrosion resistances of the Ni/TiC composites. These results indicated the Ni/40TiC composite contained finer equiaxed crystals than the Ni and Ni/20TiC composites. In addition, numerous TiC particles in the Ni/40TiC composite impeded growth of the nickel crystals, which resulted in the fine microstructure of the Ni/40TiC composite. The Ni, Ni/20TiC, and Ni/40TiC composites exhibited face-centered cubic (f c c) lattices. The average microhardness values of the Ni/20TiC and Ni/40TiC composites were approximately 748 HV and 851 HV, respectively. The Ni/40TiC composite had the lowest friction coefficient (0.43) among all three coatings, and only some shallow scratches appeared on the surface of the Ni/40TiC composite. The corrosion potential (E) of Ni/40TiC exceeded the Ni/20TiC composite, and both were larger than the Ni composite, which indicated the Ni/40TiC composite had outstanding corrosion resistance and the Ni composite had poor corrosion resistance. The corrosion current densities (i) of Ni, Ni/20TiC, and Ni/40TiC composites were 5.912, 4.405, and 3.248 μA/cm2, respectively.  相似文献   
3.
Carbon dioxide (CO2) and methane (CH4) are the primary greenhouse gases (GHGs) that drive global climate change. CO2 reforming of CH4 or dry reforming of CH4 (DRM) is used for the simultaneous conversion of CO2 and CH4 into syngas and higher hydrocarbons. In this study, DRM was investigated using Ag–Ni/Al2O3 packing and Sn–Ni/Al2O3 packing in a parallel plate dielectric barrier discharge (DBD) reactor. The performance of the DBD reactor was significantly enhanced when applying Ag–Ni/Al2O3 and Sn–Ni/Al2O3 due to the relatively high electrical conductivity of Ag and Sn as well as their anti-coke performances. Using Ag–Ni/Al2O3 consisting of 1.5 wt% Ag and 5 wt% Ni/Al2O3 as the catalyst in the DBD reactor, 19% CH4 conversion, 21% CO2 conversion, 60% H2 selectivity, 81% CO selectivity, energy efficiency of 7.9% and 0.74% (by mole) coke formation were achieved. In addition, using Sn–Ni/Al2O3, consisting of 0.5 wt% Sn and 5 wt% Ni/Al2O3, 15% CH4 conversion, 19% CO2 conversion, 64% H2 selectivity, 70% CO selectivity, energy efficiency of 6.0%, and 2.1% (by mole) coke formation were achieved. Sn enhanced the reactant conversions and energy efficiency, and resulted in a reduction in coke formation; these results are comparable to that achieved when using the noble metal Ag. The decrease in the formation of coke could be correlated to the increase in the CO selectivity of the catalyst. Good dispersion of the secondary metals on Ni was found to be an important factor for the observed increases in the catalyst surface area and catalytic activities. Furthermore, the stability of the catalytic reactions was investigated for 1800 min over the 0.5 wt% Ag-5 wt% Ni/Al2O3 and 0.5 wt% Sn-5 wt% Ni/Al2O3 catalysts. The results showed an increase in the reactant conversions with an increase in the reaction time.  相似文献   
4.
《Ceramics International》2022,48(11):15462-15469
Due to its unique artistic value, mosaic ceramics are widely used in construction-related fields. To meet the artist's demand for high-quality mosaic ceramic to create artistic works, it is necessary to meet the needs for efficient screening of mosaic ceramic tiles. Different from the ordinary large-target ceramics, mosaic ceramics exhibit characteristics of small tile sizes, a variety of colors, large demand for quantities, and easy reflection on the surface. Common manual detection methods show problems of low efficiency or accuracy, easy to fatigue, and many others. To solve these problems, this paper proposes a new detection method to identify surface defects of mosaic ceramic tiles and designs a detection system platform to achieve rapid detection. The experiment proves that the detection system has a detection rate of 93.99% for small defects on the surface of mosaic ceramic tiles, and the detection time of a single mosaic ceramic tile is less than 0.06 s. The detection method can quickly and accurately screen out high-quality, defect-free mosaic ceramic tiles, which can effectively improve the quality and artistic value of mosaic ceramic art creation.  相似文献   
5.
A digital light processing (DLP) technology has been developed for 3D printing lead-free barium titanate (BTO) piezoelectric ceramics. By comparing the curing and rheological properties of slurries with different photosensitive monomer, a high refractive index monomer acryloyl morpholine (ACMO) was chosen, and a design and preparation method of BTO slurry with high solid content, low viscosity and high curing ability was proposed. By further selecting the printing parameters, the single-layer exposure time was reduced and the forming efficiency has been greatly improved. Sintered specimens were obtained after a nitrogen-air double-step debinding and furnace sintering process, and the BTO ceramics fabricated with 80 wt% slurry shows the highest relative density (95.32 %) and piezoelectric constant (168.1 pC/N). Furthermore, complex-structured BTO ceramics were prepared, impregnated by epoxy resin and finally assembly made into hydrophones, which has significance for the future design and manufacture of piezoelectric ceramic-based composites that used in functional devices.  相似文献   
6.
To provide a basis for the high-temperature oxidation of ultra-high temperature ceramics (UHTCs), the oxidation behavior of Zr3[Al(Si)]4C6 and a novel Zr3[Al(Si)]4C6-ZrB2-SiC composite at 1500 °C were investigated for the first time. From the calculation results, the oxidation kinetics of the two specimens follow the oxidation dynamic parabolic law. Zr3[Al(Si)]4C6 exhibited a thinner oxide scale and lower oxidation rate than those of the composite under the same conditions. The oxide scale of Zr3[Al(Si)]4C6 exhibited a two-layer structure, while that of the composite exhibited a three-layer structure. Owing to the volatilization of B2O3 and the active oxidation of SiC, a porous oxide layer formed in the oxide scale of the composite, resulting in the degradation of its oxidation performance. Furthermore, the cracks and defects in the oxide scale of the composite indicate that the reliability of the oxide scale was poor. The results support the service temperature of the obtained ceramics.  相似文献   
7.
《Ceramics International》2021,47(23):33070-33077
In this work, a number of precursors with 1:1 silicon to carbon atoms ratio and various carbon atom distributions were synthesized and pyrolyzed in order to obtain silicon oxycarbide based materials. The different carbon atom distributions were obtained using both simple monomers with only one silicon atom, as well as large monomers containing either four or sixteen silicon atoms with predefined carbon atom positions. The silicon oxycarbide based materials were investigated using IR, XRD, 29Si MAS NMR and elemental analysis after annealing at various temperatures, as well as TG. The research shows that carbon atom distribution has great impact on the structure of final material and can be used to tailor the material for its projected uses.  相似文献   
8.
Hook and claw pumps are used for recirculation of excess hydrogen in fuel cells. Optimization of the pump design is essential. Computational Fluid Dynamic (CFD) is an effective method for performance optimization. However, it is difficult to conduct CFD simulation because of the sharp cusp of the rotor profile. Cut cell Cartesian mesh could be the solution to handle this complex and moving geometries. The aim of this paper is to evaluate ANSYS Forte for hook and claw pumps. Firstly, the conservation accuracy of the cut cell cartesian mesh is verified using an adiabatic piston cylinder case. Then, simulation results of hook and claw type pump are compared with experimental data. Finally, simulation results of air and hydrogen are compared. The results show that the CFD simulation of hook and claw pumps using cut cell cartesian mesh could provide an efficient and effective approach for the optimization of the system.  相似文献   
9.
乡村产业中的化石能源设备逐渐被电能技术替代,引起了乡村负荷波动增大、部分时段产生集中高负荷的问题。为了解决以上问题,将低品位清洁能源应用至乡村的茶叶生产中,针对烘茶全过程的工艺要求提出了跨临界CO2热泵烘茶技术;并以某茶叶生产乡村为对象,对其代表台区的全年日用电量及产茶日负荷进行了分析,得出采用CO2热泵烘茶后其负荷得到大幅度削减,整体可降低至原负荷的39.6%~46.8%,峰值负荷与平时负荷的比值由原本的13.6降至5.4~6.2。跨临界CO2热泵应用至农产品生产中可有效缓解乡村供电压力。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号