首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   19篇
  国内免费   3篇
化学工业   101篇
石油天然气   2篇
无线电   2篇
一般工业技术   9篇
冶金工业   1篇
  2023年   7篇
  2022年   3篇
  2021年   9篇
  2020年   2篇
  2019年   5篇
  2018年   9篇
  2017年   6篇
  2016年   4篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2004年   4篇
  2003年   9篇
  2002年   5篇
  2001年   6篇
  2000年   2篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   12篇
  1990年   4篇
  1989年   3篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
1.
Mullitization of Diphasic Aluminosilicate Gels   总被引:4,自引:0,他引:4  
Recent studies have shown that the mullitization of diphasic aluminosilicate matrices comprising transitional alumina and amorphous silica occurs via a nucleation and growth process. Nucleation is preceded by a temperature-dependent incubation period. Following this incubation period, rapid nucleation of mullite occurs, producing about 1.8 × 1011 nuclei/cm3, which remains constant throughout the rest of the transformation. Both incubation and mullite growth are thermally activated processes with apparent activation energies of 987 ± 63 and 1070 ± 200 kJ/mol, respectively. The growth rate of mullite grains under isothermal conditions is time dependent. An interpretation of these results is proposed on the basis of the nucleation and growth concepts of LaMer and Dinegar which supports the concept that the growth rate of mullite grains is controlled by the dissolution of transitional alumina into the amorphous matrix.  相似文献   
2.
Cu+⇌ R+ (R = Li, Na, and K) ion exchange experiments were conducted for 20R2O·10Al2O3·70SiO2 glasses in molten CuCl at 550°C in air and nitrogen atmospheres. The depth profiles of the copper incorporated into glasses were determined with an electron microprobe X-ray analyzer. The total amount of diffusing copper, M t, strongly depended on the type of alkali ion in the glass and the ion-exchange atmosphere; i.e., M t increased with increasing cationic size in the order Li < Na < K and M t was greater in air than in nitrogen. The Cu ⇌ R+ ion exchange kinetics are discussed in detail.  相似文献   
3.
High-alumina containing high-level waste (HLW) will be vitrified at the Waste Treatment Plant at the Hanford Site. The resulting glasses, high in alumina, will have distinct composition-structure-property (C-S-P) relationships compared to previously studied HLW glasses. These C-S-P relationships determine the processability and product durability of glasses and therefore must be understood. The main purpose of this study is to understand the detailed structural changes caused by Al:Si and (Al + Na):Si substitutions in a simplified nuclear waste model glass (ISG, international simple glass) by combining experimental structural characterizations and molecular dynamics (MD) simulations. The structures of these two series of glasses were characterized by neutron total scattering and 27Al, 23Na, 29Si, and 11B solid-state nuclear magnetic resonance (NMR) spectroscopy. Additionally, MD simulations were used to generate atomistic structural models of the borosilicate glasses and simulation results were validated by the experimental structural data. Short-range (eg, bond distance, coordination number, etc) and medium-range (eg, oxygen speciation, network connectivity, polyhedral linkages) structural features of the borosilicate glasses were systematically investigated as a function of the degree of substitution. The results show that bond distance and coordination number of the cation-oxygen pairs are relatively insensitive to Al:Si and (Al + Na):Si substitutions with the exception of the B-O pair. Additionally, the Al:Si substitution results in an increase in tri-bridging oxygen species, whereas (Al + Na):Si substitution creates nonbridging oxygen species. Charge compensator preferences were found for Si-[NBO] (Na+), [3]B-[NBO] (Na+), [4]B (mostly Ca2+), [4]Al (nearly equally split Na+ and Ca2+), and [6]Zr (mostly Ca2+). The network former-BO-network former linkages preferences were also tabulated; Si-O-Al and Al-O-Al were preferred at the expense of lower Si-O-[3]B and [3]B-O-[3]B linkages. These results provide insights on the structural origins of property changes such as glass-transition temperature caused by the substitutions, providing a basis for future improvements of theoretical and computer simulation models.  相似文献   
4.
Long-term chemical durability of borosilicate glasses that makes them a widely accepted form of nuclear waste disposal is achieved through the formation of a porous aluminosilicate gel layer that provides passivity and limits the transport of water to the reaction front. Detailed understanding of the porous silicate gel layer is thus critical in elucidating the corrosion mechanism of these glasses and to design of new glass composition for waste immobilization and other applications. In this paper, we use the diffuse charge reactive potential to generate porous aluminosilicate glass structures with compositions equivalent to the gel layers formed at the glass-water interface with an aim to understand the processing condition on the microstructure and atomic structure of these systems. We demonstrate the use of the charge scaling techniques is an effective approach to generate these porous structures with controllable pore mophologies. After initial validation of the potentials and calcium aluminosilicate glass structures using neutron diffraction, we created gel structures with compositions similar to well-known model nuclear waste borosilicate glasses. The porosities and the pore size distribution bear a strong correlation to the processing temperature, as well as to the local atomic structure. Thus, by controlling the processing parameters, the generated porous structures can be customized to closely resemble gel structures due to borosilicate glass corrosion. These results provide insights of the micro- and atomic structure features of the porous aluminosilicate glasses and on the optimal procedure to generate porous structures that can be comparable to experimentally observed gel layer structures thus to elaborate on the correlations between the structure and phenomena in glass-water interactions.  相似文献   
5.
6.
This paper reports the presence of Al- O- Al linkages in an aluminosilicate glass where Si/Al = 1 by using 2D17O triple quantum MAS NMR technique (3Q MASNMR). The experiments were performed at external magnetic fields of 8.4 and 14.4T. Despite17OMAS NMR spectra of the sample in both fields do not give much information about the different kinds of linkages in the sample, 3Q MAS NMR spectrum shows clear evidence that there are some amounts of Al-O-Al linkages in the sample giving two completely resolved peaks. These two peaks were attributed to the Si-O-Al and Al-O-Al linkages on the basis of their chemical shifts and, quadrupolar coupling constants which are quite sensitive to the local structure.  相似文献   
7.
Sintering studies were conducted using kaolin, metakaolin, zeolite 4A, and various synthetic mixtures of Al2O3 and SiO2 in the presence of Li2CO3 and LiCl as fluxing agents. Various compositions of the above were prepared, and conventional sintering studies were conducted at temperatures of 900°–1450°C with soaking periods of 1–3 h. Kaolin, metakaolin, and amorphized kaolin in the presence of Li2CO3 showed nucleation centers of β-spodumene as pink specks, whereas synthetic mixtures of Al2O3 and SiO2 failed to behave in the same manner. To determine whether the pink specks formed were color centers or F centers, the samples were subjected to UV, IR, and X-ray irradiation; however, the samples showed no tenebrescence properties. External addition of iron as an impurity in a nonlayered system also resulted in pink speck formation. This observation indicated that impurities present in the natural kaolin were the cause of this phenomenon. Moreover, the LiCl-based samples did not result in pink specks, even though the kaolinitic samples contained iron as an impurity. Therefore, although β-spodumene was formed in aluminosilicates in the presence of Li2CO3 and LiCl, the pink variety of β-spodumene (kunzite) formation occurred only in the presence of lithium-rich aluminosilicates and in the presence of iron as an impurity. The phase identification and microstructure were explained based on XRD, DTA, and SEM studies.  相似文献   
8.
To design suitable mold fluxes for the casting of high‐Al steels, the structure of mold fluxes based on CaO–SiO2, CaO–SiO2–Al2O3, and CaO–Al2O3 was examined by Raman spectroscopy and magic‐angle spinning nuclear magnetic resonance. The results showed that Si atoms are replaced by Al atoms as the network formers with the increase in Al2O3 in the mold fluxes. This converts the silicate slags (CaO–SiO2 mold fluxes) into aluminosilicates slags (CaO–SiO2–Al2O3 or CaO–Al2O3 mold fluxes). The F? ions in the mold flux containing Al2O3 are classified into three categories, according to function: Bridging F's, Nonbridging F's, and Free‐F's. The Al3+ ion holds three distinct coordination environments: IVAl, VAl, and VIAl. The addition of F affects the coordination environment of Al3+ to form AlO3F and AlO2F2 that accommodate the network structure of slags. The network structure in the CaO–SiO2 mold fluxes is mainly connected through Si–O–Si linkage. However, the network structure of the mold fluxes containing elevated content of Al2O3 is mainly connected through Si–O–Si, Al–O–Al, Al–O–Si, and Al–F–Al linkages. Hence, the structural characteristics of high‐Al steels mold fluxes must be considered during the designing step of the mold fluxes.  相似文献   
9.
Lithium aluminosilicate glass-ceramics are well known for good transparency, high fracture toughness, low thermal expansion, and good ion exchange ability. In this study, new transparent Li2O-Al2O3-SiO2 (LAS) glass-ceramics with petalite and β-spodumene solid solution as the major crystalline phases were invented for favorable mechanical properties and potential for application in the hollowware, tableware, container, and plate glass industries. Crystal phases are mainly influenced by the ratio of Al2O3 to SiO2 concentrations. The concentration of SiO2 required to form specific crystalline phases in the glass-ceramics is higher than that inferred from the ternary phase diagram. Al2O3 content is required to be sufficiently high for the formation of crystals, instead of balancing excess amounts of Li2O in the glass. The average transmittances of 2.0 ± 0.1 mm thickness samples in visible light regions (400–700 nm) can reach more than 80% with crystal sizes of 20–40 nm. Transmittance is significantly decreased for heat treatments around 710°C, due to the high growth rate of β-spodumene solid solution crystals. Vickers hardness, indentation toughness, and crack probabilities of transparent LAS glass-ceramics are significantly improved compared with standard soda lime silicate glass, due to the crack bridging and deflection of crystal grains.  相似文献   
10.
Calcium silicate hydrate and its Al‐substituted form synthesized by a hydrothermal process were investigated by X‐ray diffraction, compositional analysis, and magic‐angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, in order to determine the mechanism of Al and Na incorporation in the tobermorite structure with varying molar ratios of Ca/Si and Al/Si. At a high molar ratio of Ca/Si, the silicate chains of tobermorite are ruptured, the degree of polymerization of the silicate chains is lowered, and the high calcium concentration lowers the content of Na2O in the structure. Solid‐state 29Si and 27Al MAS NMR spectroscopy confirm that all Al atoms were incorporated in the silicate chains of tobermorite. The tetrahedrally coordinated Al (Al(IV)) could either act as the bridging tetrahedron () for the dreierketten chain of tobermorite, or be present in Q3 sites that link two dreierketten chains together. Therefore, the degree of polymerization of the silicate chains of tobermorite is increased at high molar ratio of Al/Si. Furthermore, the greater charge deficit due to the replacement of Si4+ by Al3+ ions is compensated by increased adsorption or binding of Na+.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号