首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学工业   6篇
  2022年   3篇
  2021年   1篇
  2014年   1篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
β-arrestins were initially identified to desensitize and internalize G-protein-coupled receptors (GPCRs). Receptor-bound β-arrestins also initiate a second wave of signaling by scaffolding mitogen-activated protein kinase (MAPK) signaling components, MAPK kinase kinase, MAPK kinase, and MAPK. In particular, β-arrestins facilitate ERK1/2 or JNK3 activation by scaffolding signal cascade components such as ERK1/2-MEK1-cRaf or JNK3-MKK4/7-ASK1. Understanding the precise molecular and structural mechanisms of β-arrestin-mediated MAPK scaffolding assembly would deepen our understanding of GPCR-mediated MAPK activation and provide clues for the selective regulation of the MAPK signaling cascade for therapeutic purposes. Over the last decade, numerous research groups have attempted to understand the molecular and structural mechanisms of β-arrestin-mediated MAPK scaffolding assembly. Although not providing the complete mechanism, these efforts suggest potential binding interfaces between β-arrestins and MAPK signaling components and the mechanism for MAPK signal amplification by β-arrestin-mediated scaffolding. This review summarizes recent developments of cellular and molecular works on the scaffolding mechanism of β-arrestin for MAPK signaling cascade.  相似文献   
2.
3.
Arrestins preferentially bind active phosphorylated G protein-coupled receptors (GPCRs). The middle loop, highly conserved in all arrestin subtypes, is localized in the central crest on the GPCR-binding side. Upon receptor binding, it directly interacts with bound GPCR and demonstrates the largest movement of any arrestin element in the structures of the complexes. Comprehensive mutagenesis of the middle loop of rhodopsin-specific arrestin-1 suggests that it primarily serves as a suppressor of binding to non-preferred forms of the receptor. Several mutations in the middle loop increase the binding to unphosphorylated light-activated rhodopsin severalfold, which makes them candidates for improving enhanced phosphorylation-independent arrestins. The data also suggest that enhanced forms of arrestin do not bind GPCRs exactly like the wild-type protein. Thus, the structures of the arrestin-receptor complexes, in all of which different enhanced arrestin mutants and reengineered receptors were used, must be interpreted with caution.  相似文献   
4.
Arrestins are a small family of proteins that bind G protein-coupled receptors (GPCRs). Arrestin binds to active phosphorylated GPCRs with higher affinity than to all other functional forms of the receptor, including inactive phosphorylated and active unphosphorylated. The selectivity of arrestins suggests that they must have two sensors, which detect receptor-attached phosphates and the active receptor conformation independently. Simultaneous engagement of both sensors enables arrestin transition into a high-affinity receptor-binding state. This transition involves a global conformational rearrangement that brings additional elements of the arrestin molecule, including the middle loop, in contact with a GPCR, thereby stabilizing the complex. Here, we review structural and mutagenesis data that identify these two sensors and additional receptor-binding elements within the arrestin molecule. While most data were obtained with the arrestin-1-rhodopsin pair, the evidence suggests that all arrestins use similar mechanisms to achieve preferential binding to active phosphorylated GPCRs.  相似文献   
5.
Our understanding of the molecular basis of chemical signal recognition in insects has been greatly expanded by the recent discovery of olfactory receptors (Ors). Since the discovery of the complete repertoire of Drosophila melanogaster Ors, candidate Ors have been identified from at least 12 insect species from four orders (Coleoptera, Lepidoptera, Diptera, and Hymenoptera), including species of economic or medical importance. Although all Ors share the same G-protein coupled receptor structure with seven transmembrane domains, they present poor sequence homologies within and between species, and have been identified mainly through genomic data analyses. To date, D. melanogaster remains the only insect species where Ors have been extensively studied, from expression pattern establishment to functional investigations. These studies have confirmed several observations made in vertebrates: one Or type is selectively expressed in a subtype of olfactory receptor neurons, and one olfactory neuron expresses only one type of Or. In addition, all olfactory neurons expressing one Or type converge to the same glomerulus in the antennal lobe. The olfactory mechanism, thus, appears to be conserved between insects and vertebrates. Although Or functional studies are in their initial stages in insects (mainly Drosophila), insects appear to be good models to establish fundamental concepts of olfaction with the development of powerful genetic, imaging, and behavioral tools. This new field of study will greatly contribute to the understanding of insect chemical communication mechanisms, particularly with agricultural pests and disease vectors, and could result in future strategies to reduce their negative effects.  相似文献   
6.
Three out of four subtypes of arrestin proteins expressed in mammals self-associate, each forming oligomers of a distinct kind. Monomers and oligomers have different subcellular localization and distinct biological functions. Here we summarize existing evidence regarding arrestin oligomerization and discuss specific functions of monomeric and oligomeric forms, although too few of the latter are known. The data on arrestins highlight biological importance of oligomerization of signaling proteins. Distinct modes of oligomerization might be an important contributing factor to the functional differences among highly homologous members of the arrestin protein family.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号