首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25835篇
  免费   1689篇
  国内免费   1530篇
电工技术   442篇
技术理论   1篇
综合类   1153篇
化学工业   6775篇
金属工艺   7032篇
机械仪表   1237篇
建筑科学   1177篇
矿业工程   308篇
能源动力   716篇
轻工业   2195篇
水利工程   102篇
石油天然气   550篇
武器工业   219篇
无线电   940篇
一般工业技术   4828篇
冶金工业   1073篇
原子能技术   129篇
自动化技术   177篇
  2024年   150篇
  2023年   562篇
  2022年   788篇
  2021年   912篇
  2020年   803篇
  2019年   847篇
  2018年   809篇
  2017年   1034篇
  2016年   856篇
  2015年   901篇
  2014年   1248篇
  2013年   1415篇
  2012年   1646篇
  2011年   1930篇
  2010年   1557篇
  2009年   1485篇
  2008年   1238篇
  2007年   1549篇
  2006年   1564篇
  2005年   1320篇
  2004年   1154篇
  2003年   922篇
  2002年   830篇
  2001年   664篇
  2000年   601篇
  1999年   436篇
  1998年   387篇
  1997年   296篇
  1996年   262篇
  1995年   217篇
  1994年   167篇
  1993年   147篇
  1992年   127篇
  1991年   63篇
  1990年   49篇
  1989年   51篇
  1988年   18篇
  1987年   4篇
  1986年   14篇
  1985年   4篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1977年   2篇
  1976年   1篇
  1959年   2篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
1.
This study presents an improved mathematical model to analyse the stress wave propagation in adhesively bonded functionally graded (FG) circular cylinders (butt joint) under an axial impulsive load. The volume fractions of the material constituents in the upper and lower cylinders were functionally tailored through the thickness of each cylinder using a power-law. The effective material properties of both cylinders, which are made of aluminum (Al) and silicon carbide (SiC), at any point were predicted by using the Mori–Tanaka homogenization scheme. In this improved model, the governing equations of the wave propagation include the spatial derivatives of local mechanical properties and were discretized by means of the finite difference method. The influence of these spatial derivatives and the compositional gradient exponent on the displacement and stress distributions of the joint was investigated. The material composition variations of both cylinders affected the displacement and stress fields whereas the compositional gradient exponent had a minor effect. The stress concentrations were alleviated in time, the displacement and stress distributions/variations around/along the upper and lower cylinder-adhesive interfaces were significantly affected by the adhesive layer. The spatial derivatives also affected the temporal histories of the displacement and stress components evaluated at the selected critical points of the upper cylinder, adhesive layer and lower cylinder. The consideration of the spatial local material derivatives provided a more accurate mathematical model of wave propagations through the graded layered structures.  相似文献   
2.
Mass transfer in polycrystalline Yb2SiO5 wafers with precise composition control was evaluated and analyzed by oxygen permeation experiments at high temperatures using an oxygen tracer. Oxygen permeation proceeded due to mutual grain boundary diffusion of oxide ions and Yb ions without synergistic effects such as acceleration or suppression. The oxygen shielding properties of Yb2SiO5 were compared with those of the other line compounds such as Yb2Si2O7 and Al2O3 based on the determined mass transfer parameters. It was found that the more preferentially an oxide ion diffuses in the grain boundary compared to the interior of the grain, the greater the effect of suppressing the movement of the oxide ion by applying an oxygen potential gradient becomes.  相似文献   
3.
A silica-based glass-ceramic, with Y2Ti2O7 as the major crystalline phase, is designed, characterised and tested as an oxidation-protective coating for a titanium suboxide (TiOx) thermoelectric material at temperatures of up to 600 °C. The optimised sinter-crystallisation treatment temperatures are found to be 1300 °C and 855 °C for a duration of 30 min, and this treatment leads to a glass-ceramic with cubic Y2Ti2O7 and CaAl2Si2O8 as crystalline phases. An increase of ~270 °C in the dilatometric softening temperature is observed after devitrification of the parent glass, thus further extending its working temperature range.Excellent adhesion of the glass-ceramic coating to the thermoelectric material is maintained after exposure to a temperature of 600 °C for 120 h under oxidising conditions, thus confirming the effectiveness of the T1 glass-ceramic in protecting the TiOx material.  相似文献   
4.
In an attempt to optimize the properties of FeCoNi coating for planar solid oxide fuel cell (SOFC) interconnect application, the coating composition is modified by increasing the ratio of Fe/Ni. An Fe1·5CoNi0.5 (Fe:Co:Ni = 1.5:1:0.5, atomic ratio) metallic coating is fabricated on SUS 430 stainless steel by magnetron sputtering, followed by oxidation in air at 800°C. The Fe1·5CoNi0.5 coating is thermally converted to (Fe,Co,Ni)3O4 and (Fe,Co,Mn,Ni)3O4 without (Ni,Co)O particles. After oxidation for 1680 h, no further migration of Cr is detected in the thermally converted coating region. A low oxidation rate of 5.9 × 10?14 g2 cm?4 s?1 and area specific resistance of 12.64 mΩ·cm2 is obtained for Fe1·5CoNi0.5 coated steels.  相似文献   
5.
In this present work, the effect of lanthanum oxides (La2O3) on the thermal cycle behavior of TBC coatings and mechanical properties such as adhesion strength and microhardness of 8% Yttria Stabilized Zirconia (8YSZ) TBCs were investigated. CoNiCrAlY and aluminium alloy (Al–13%Si) were used as bond coat and substrate materials. 8YSZ and different wt % of La2O3 (10, 20, and 30%) top coatings were applied using the atmospheric plasma spray (APS) method. The thermal cycling test for TBC coated samples were conducted at 800 °C in the electric furnace. The XRD pattern shows that the La2O3 doped 8YSZ material transformed to cubic pyrochloric structured La2Zr2O7 during thermal cycling. Further, the Taguchi-based grey relation analysis (GRA) method was applied to optimize the TBC coating parameters to achieve better mechanical properties such as adhesion strength and microhardness. And the optimized La2O3/8YSZ TBC coating was coated on CRDI engine combustion chamber components. The engine was tested with microalgae biodiesel and hydrogen, and the results were promising for the TBC-coated engine. The engine performance increased while using La2O3/8YSZ coated components, and the emissions from engine exhaust gas such as CO, HC, and smoke reduced considerably. It was found that there was no separation crack and spallation of the coating layer in the microstructure. Ultimately, the microstructural analysis of the optimized TBC coated piston sample after 50 h of running in the diesel engine confirmed that the developed coating had a superior thermal insulation effect and longer life.  相似文献   
6.
This work focuses on identifying the rate-determining step of oxygen transport through La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes with symmetric and asymmetric architectures. The best oxygen semipermeation fluxes are 3.4 10−3 mol. m-2.s-1 and 6.3 10−3 mol. m-2.s-1 at 900 °C for the symmetric membrane and asymmetric membrane with a modified surface. The asymmetric membrane with a modified surface leads to an increase of approximately 7 times the oxygen flux compared to that obtained with the La0.5Sr0.5Fe0.7Ga0.3O3-δ dense membrane without surface modification. This work also shows that the oxygen flux is mainly governed by gaseous oxygen diffusion through the porous support of asymmetric La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes.  相似文献   
7.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
8.
Hot-dip galvanizing is a standard technology to produce coated steel strips. The primary objective of the galvanizing process is to establish a homogeneous zinc layer with a defined thickness. One condition to achieve this objective is a uniform transverse distance between the strip and the gas wiping dies, which blow off excessive liquid zinc. Therefore, a flat strip profile at the gas wiping dies is required. However, strips processed in such plants often exhibit residual curvatures which entail unknown flatness defects of the strip. Such flatness defects cause non-uniform air gaps and hence an inhomogeneous zinc coating thickness. Modern hot-dip galvanizing lines often use electromagnets to control the transverse strip profile near the gas wiping dies. Typically, the control algorithms ensure a flat strip profile at the electromagnets because the sensors for the transverse strip displacement are also located at this position and it is unfeasible to mount displacement sensors directly at the gas wiping dies. This brings along that in general a flatness defect remains at the gas wiping dies, which in turn entails a suboptimal coating.In this paper, a model-based method for a feedforward control of the strip profile at the position of the gas wiping dies is developed. This method is based on a plate model of the axially moving strip that takes into account the flatness defects in the strip. First, an estimator of the flatness defects is developed and validated for various test strips and settings of the plant. Using the validated mathematical model, a simulation study is performed to compare the state-of-the-art control approach (flat strip profile at the electromagnets) with the optimization-based feedforward controller (flat strip profile at the gas wiping dies) proposed in this paper. Moreover, the influence of the distance between the gas wiping dies and the electromagnets is investigated in detail.  相似文献   
9.
This paper deals with three-dimensional non-linear finite element analyses to assess the structural behavior of adhesively-bonded double supported tee joint of laminated FRP composites having embedded interfacial failures. The onset of interfacial failures is predicted by using Tsai–Wu coupled stress failure criterion with pre-determined stress values. The concept of fracture mechanics principle is utilized to study the sustainability of the tee joint having interfacial failures pre-existed at the critical locations. Individual modes of the strain energy release rates (SERR) GI, GII and GIII, are considered as the damage growth parameters and, are evaluated using the Modified crack closure integral (MCCI) technique based on the concept of linear elastic fracture mechanics (LEFM). Based on the stress analyses, it has been observed that the interfacial failures in tee joint structure trigger at the interface of base plate and adhesive layer from both ends of base plate. Depending on the SERR magnitudes, it has been noticed that the interfacial failure propagates under mixed mode condition. Therefore total SERR (GT) is considered as the governing parameter for damage propagation. Furthermore, efforts have been made to retard damage propagation rate by employing functionally graded adhesive (FGA) instead of monolithic adhesive material. Series of numerical simulations have been performed for varied interfacial failure length in functionally graded adhesively bonded double supported tee joint structure in order to achieve the significant effect of FGA with various modulus ratios on SERR. Material gradation of adhesive indicates significant SERR reduction at the incipient stage of failure which necessitates the use of functionally graded adhesive for the tee joint and prolong the service life of the structure.  相似文献   
10.
Tuna cooking juice is a by‐product from the tuna canning industry. In this study, tuna cooking juice was hydrolysed by proteases extracted from the spleen. Tuna cooking juice showed the highest ACE inhibitory and Ca‐binding activities after hydrolysis for 270 and 180 min, respectively. The hydrolysate was further fractionated by ultrafiltration. The permeate exhibited highest ACE inhibitory and Ca‐binding activities when passed through 1 and 5 kDa cut‐off membranes, respectively. Gel filtration chromatography was used to determine the MW of bioactive peptides that exhibited highest ACE inhibitory and Ca‐binding activities. Those peptides that exhibited highest ACE inhibitory and Ca‐binding activities were the MW range of 238–829 Da and 1355–1880 Da, respectively. These results suggest that the tuna cooking juice and the spleen protease extract are a potential source of bioactive peptides that can be utilised as bioactive ingredients in functional food and nutraceuticals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号