首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   5篇
综合类   1篇
化学工业   8篇
建筑科学   2篇
能源动力   4篇
轻工业   2篇
一般工业技术   2篇
冶金工业   1篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2013年   1篇
  2004年   1篇
  2003年   2篇
  1999年   2篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
Advanced hybrid biocomposites are engineered from nylon 6, waste wood biosourced carbon (biocarbon) with a low content of synthetic fiber for lightweight auto-parts uses. The novel engineering process through direct injection molding of only 2 wt% synthetic fibers in the form of masterbatch with 20 wt% biocarbon, results outstanding performance of the resulting nylon biocomposites. Such uniquely developed biocomposites show tensile strength of 105 MPa and tensile modulus of 5.14 GPa with a remarkable heat deflection temperature (HDT) of 206 °C. The direct injection molding of synthetic fiber retains the length ≈3 times higher as compared to traditional extrusion and injection molding; resulting greater degree of entanglement and composite reinforcement effectiveness in the hybrid biocomposites. Highly dimensionally stable nylon 6 biocomposites with a very low coefficient of linear thermal expansion results through reinforcing ability of the sustainable biocarbon and small amount of synthetic fiber.  相似文献   
2.
选用桑蚕废弃物蚕沙为炭源,通过炭化活化的方式获得了一种高比表面的中微双孔道生物炭材料SCSE,并采用不同氧化剂对其表面氧化处理以调控材料孔径和表面积对农药噻虫嗪分子的吸附作用力,以实现SCSE材料对农药噻虫嗪的缓控释,并系统研究了氧化改性后材料的比表面积、孔径和表面基团性质的变化对材料吸附噻虫嗪的热力学和动力学平衡以及噻虫嗪的释放动力学等性能的影响。结果表明:SCSE孔隙结构发达,其BET比表面和孔容分别为1290.95 m2/g和0.690 cm3/g;在室温下,该材料对噻虫嗪分子的吸附容量达到560 mg/g。噻虫嗪在四种SCSE上的释放动力学可分为快速持续释放过程和慢速释放过程两个过程,其中快速持续释放过程的释放动力学常数约是慢速释放过程的29~34倍;其中硝酸改性后的SCSE-HN对噻虫嗪的释放比例最大,释放速度最快。本实验所获得的四种SCSE材料对噻虫嗪的释放均表现出长效释放效力。按照一般农作物的需药量,该吸附剂只要按照0.5 g/(d·m2)的投入量便能很好地对农作物进行长效的虫害防治(>40 d)。  相似文献   
3.
油茶果壳是油茶籽油生产过程中最大的副产物,对油茶果壳的不合理处置不仅会造成环境污染,同时也造成了资源浪费。为了促进油茶果壳的充分利用和开发,总结了以油茶果壳为原料制备生物燃料及生物碳材料方面的研究进展,并对油茶果壳在其他工业原料制备方面的应用进行了综述。油茶果壳可通过热解转化为生物炭、生物油和燃料气,作为生物燃料应用。油茶果壳生物质衍生碳材料可以作为电极材料、吸附材料和催化材料应用。油茶果壳还可以用于制备半纤维素、寡糖等工业原料。油茶果壳生物质应用研究有助于未来油茶产业链的延伸,实现油茶籽油副产物的高值化利用。  相似文献   
4.
Water electrolysis is the most clean and high-efficiency technology for production of hydrogen, an ultimate clean energy in future. Highly efficient non-noble electrocatalysts for hydrogen evolution reaction (HER) are desirable for large scale production of hydrogen by water electrolysis. Especially, exposing as many active sites as possible is a vital way to improve activities of the catalysts. Herein, a series of new hydrangea like composite catalysts of ultrathin Mo2S3 nanosheets assembled uprightly and interlacedly on N, S-dual-doped graphitic biocarbon spheres were facilely prepared. The unique structure endowed the catalysts highly exposed edge active sites and prominently high activities for HER. Especially, the optimized catalyst Mo2S3/NSCS-50 exhibited as low as 106 mV of overpotential at 10 mA/cm2 (denoted as ?10). The catalyst also showed low Tafel slope of 53 mV/dec, low electron transfer resistance of 34 Ω and high stability evidenced by the result that the current density only attenuated 11.7% after 10 h i-t test. The catalyst has shown broad prospect for commercial application in water electrolysis.  相似文献   
5.
采用水解-接触氧化-气浮-混凝沉淀-生物炭工艺处理以分散染料为主的印染废水,设计规模为960m^3/d,进水水质为:pH8.01,CODCr992mg/L,BOD5 251mg/L,SS298mg/L,色度400倍;经本工艺处理后,总排放口出水水质为:pH7.64,CODCr72mg/L,BOD5 19mg/L,SS61mg/L,色度16倍。  相似文献   
6.
牛仔布染整废水的处理   总被引:3,自引:0,他引:3  
本文介绍了上海申南纺织有限公司牛仔布染整废水的处理,该项目采用延时曝气、气浮、生物活性炭(备用)三级处理。项目投入使用后运行情况良好,达标率100%。并获得了1998年度上海市优秀设计二等奖  相似文献   
7.
目的用磷酸改性生物炭对包装印刷废水处理,寻找秸秆生物质优化利用新途径。方法生物炭用磷酸改性,通过正交实验找到制备磷酸改性生物炭的最佳工艺条件,并用最佳工艺条件制备磷酸改性生物炭用于处理包装印刷废水;研究磷酸改性生物炭添加量、吸附时间、pH值对包装印刷废水的吸附量、COD去除率和脱色率的影响,结果磷酸对生物炭改性的最佳工艺条件:改性时间为4h,磷酸体积分数为40%,改性温度40℃;磷酸改性生物炭处理包装印刷废水的最佳工艺条件:吸附时间为60 min,pH值为8,磷酸改性生物炭质量浓度为0.3 g/L。结论通过用磷酸来对生物炭改性以提高其对污染物的吸附能力,可用于吸附包装印刷废水中的污染物,用于包装印刷废水的初步处理。  相似文献   
8.
In this work a first approximation to obtain non-noble metal electrocatalysts from onion skin wastes is reported. Biocarbon were obtained at a range of 600–800 °C of pyrolysis temperature activated by chemical treatment with HNO3. It was observed that the pyrolysis temperature has a direct effect on the structural and textural properties, besides the morphology of the onion skin waste-derived biocarbon, which shows to have influence on the catalytic activity for the oxygen reduction reaction ORR. AOB700 was the non-noble metal electrocatalyst with the best performance for the ORR evaluated in alkaline electrolyte (0.5 mol L−1 KOH), which had the highest surface area (242 m2g-1) and a current density of −2.35 mA cm−2 with an onset potential of 0.82 V/RHE. The chemical surface composition shows that N-pyridinic, N-amine, N-quaternary and N-pyrrolic nitrogen species are present on this electrocatalysts. The use of onion skin waste as raw material in the production of non-noble metal electrocatalysts is a sustainable solution to avoid the disposal of abundant biomass residues as onion skins.  相似文献   
9.
波司登制衣股份有限公司采用水解-接触氧化-气浮-生物炭工艺处理成衣水洗废水,设计规模为360m3/d。处理后,CODCr,BOD5,SS和色度的去除率分别达到80%,80.4%,90%,61%,总排放口水质为:pH=6.98,ρ(CODCr)=74mg/L,ρ(BOD5)=13.9mg/L,ρ(SS)=46mg/L,色度=16倍。  相似文献   
10.
There is great interest in developing conductive biomaterials for the manufacturing of sensors or flexible electronics with applications in healthcare, tracking human motion, or in situ strain measurements. These biomaterials aim to overcome the mismatch in mechanical properties at the interface between typical rigid semiconductor sensors and soft, often uneven biological surfaces or tissues for in vivo and ex vivo applications. Here, the use of biobased carbons to fabricate conductive, highly stretchable, flexible, and biocompatible silk‐based composite biomaterials is demonstrated. Biobased carbons are synthesized via hydrothermal processing, an aqueous thermochemical method that converts biomass into a carbonaceous material that can be applied upon activation as conductive filler in composite biomaterials. Experimental synthesis and full‐atomistic molecular dynamics modeling are combined to synthesize and characterize these conductive composite biomaterials, made entirely from renewable sources and with promising applications in fields like biomedicine, energy, and electronics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号