首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7108篇
  免费   655篇
  国内免费   51篇
电工技术   56篇
技术理论   1篇
综合类   328篇
化学工业   4614篇
金属工艺   62篇
机械仪表   58篇
建筑科学   131篇
矿业工程   11篇
能源动力   12篇
轻工业   1699篇
水利工程   3篇
石油天然气   119篇
武器工业   5篇
无线电   67篇
一般工业技术   604篇
冶金工业   20篇
原子能技术   3篇
自动化技术   21篇
  2024年   33篇
  2023年   64篇
  2022年   127篇
  2021年   234篇
  2020年   220篇
  2019年   193篇
  2018年   193篇
  2017年   224篇
  2016年   185篇
  2015年   241篇
  2014年   360篇
  2013年   475篇
  2012年   423篇
  2011年   444篇
  2010年   319篇
  2009年   330篇
  2008年   315篇
  2007年   447篇
  2006年   474篇
  2005年   396篇
  2004年   352篇
  2003年   335篇
  2002年   298篇
  2001年   232篇
  2000年   177篇
  1999年   174篇
  1998年   128篇
  1997年   107篇
  1996年   71篇
  1995年   52篇
  1994年   32篇
  1993年   32篇
  1992年   31篇
  1991年   14篇
  1990年   23篇
  1989年   16篇
  1988年   7篇
  1987年   9篇
  1986年   2篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1982年   6篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有7814条查询结果,搜索用时 15 毫秒
1.
Biodegradable hollow microfibres containing particles loaded with specific active agents can be potentially employed to produce a special kind of substrate for tissue engineering, able to function as a scaffold and at the same time to act as a drug‐releasing system. Biodegradable hollow microfibres based on poly(lactic acid) were produced by a dry–wet spinning procedure. Drug‐loaded microparticles were prepared by a simple oil‐in‐water emulsion and entrapped inside the fibres. The morphology of both fibres and particles was investigated by scanning electron microscopy. The mechanical and thermal properties of the fibres were investigated by tensile tests and differential scanning calorimetry. In vitro tests were performed to evaluate the release of the drug from the fibres loaded with the particles Copyright © 2004 Society of Chemical Industry  相似文献   
2.
Polyester‐based polyurethane/nano‐silica composites were obtained via in situ polymerization and investigated by Fourier‐transform infrared spectroscopy (FTIR), or FTIR coupled with attenuated total reflectance (FTIR‐ATR), Transmission electron microscopy (TEM), atomic force microscopy (AFM), an Instron testing machine, dynamic mechanical analysis (DMA) and ultraviolet‐visible spectrophotometry (UV‐vis). FTIR analysis showed that in situ polymerization provoked some chemical reactions between polyester molecules and nano‐silica particles. FTIR‐ATR, TEM and AFM analyses showed that both surface and interface contained nano‐silica particles. Instron testing and DMA data showed that introducing nano‐silica particles into polyurethane enhanced the hardness, glass temperature and adhesion strength of polyurethane to the substrate, but also increased the resin viscosity. UV‐vis spectrophotometry showed that nano‐silica obtained by the fumed method did not shield UV radiation in polyurethane films. Copyright © 2003 Society of Chemical Industry  相似文献   
3.
Interfacial polycondensation of diphenolic acid (DPA) and isophthaloyl chloride (IPC) in various solvent/water systems was investigated with tetrabutyl ammonium chloride as a phase transfer catalyst. It was found that a large mass of capsules were formed at the beginning of the reaction for all solvents examined but the capsule morphology and reaction results depended on the solvents. It is believed that the capsule shells make up of the reaction zone and a mechanism of the interfacial polycondensation is proposed accordingly. The effect of the solvents on the reaction was interpreted from the interaction between the polymer and the solvent according to the mechanism. The reaction conditions were optimized, and poly(DPA-IPC) with high intrinsic viscosity was prepared in high yield under the optimal condition. It is an amorphous polymer with glass transition temperature of about 160°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
4.
In recent years biodegradable polymers, particularly polyesters such as the poly(lactic acid) (PLA) and polycaprolactone (PCL), have gained high interests for their applicability in the biomedical and pharmaceutical fields where they're used for manufacturing various different resorbable devices, from tissue engineering scaffolds to controlled drug release systems. Despite many positive characteristics, processability of these materials still remains a critical issue as they easily tend to degrade during manufacturing. In this article we aimed to assess microextrusion as a nondegradative process for manufacturing PLA and PCL. The results we experimentally obtained, that are hereby presented, set a new point in the on‐going debate on degradation during processing of resorbable polymers as they allow to affirm that microextrusion leaves unmodified molecular weight distributions without producing any evident reductions in mean molecular weight. Microextrusion thus represents a risk‐free high molecular weight polymer processing solution for obtaining nondegraded products within pharmaceutical and biomedical production lines, such as for scaffolds for tissue engineering applications or drug delivery. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
5.
The moisture uptake of polymers and composites has increasing significance where these materials are specified for invasive, long‐term medical applications. Here we analyze mass gain and the ensuing degradation mechanisms in phosphate glass fiber reinforced poly‐?‐caprolactone laminates. Specimens were manufactured using in situ polymerization of ?‐caprolactone around a bed of phosphate glass fibers. The latter were sized with 3‐aminopropyltriethoxysilane to control the rate of modulus degradation. Fiber content was the main variable in the study, and it was found that the moisture diffusion coefficient increased significantly with increasing fiber volume fraction. Diffusion, plasticization, and leaching of constituents appear to be the dominant aspects of the process over these short‐term tests. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   
6.
An effective two-stage method has been developed for imparting antimicrobial properties to regular polyethylene terephthalate (R-PET), polyethylene glycol modified polyethylene terephthalate (PEG-M-PET), R-PET/Cotton blend (R-PET/C) and PEG-M-PET/Cotton blend (PEG-M-PET/C) fabrics. The method consists of partial hydrolysis of the fabrics to create carboxylic groups in PET macromolecules followed by subsequent reaction with dimethylalkylbenzyl ammonium chloride (DMABAC) under alkaline conditions. The reaction conditions such as pH, reaction temperature and time, carboxylic content, and DMABAC concentration were studied. Characterization of the finished fabrics was carried out through scanning electron microscopy (SEM) and Fourier transform infrared spectra (FTIR). All the modified PET fabrics showed excellent antibacterial activity towards Gram-positive (Bacillus mycoides), Gram-negative (Escherichia coli), and nonfilamentous fungus (Candida albicans). The achieved antimicrobial functions on the PET fabrics are durable in repeated laundering processes. Even after laundering 10 times the fabrics could still provide more than 85% of its antimicrobial activity against B. mycoides, E. coli, and C. albicans. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
7.
Quantitative analysis of isothermal crystallization kinetics of PLA/clay nanocomposite and PLA/clay/regenerated cellulose fiber (RCF) hybrid composite has been conducted. The crystallization rate constant (k) according to Avrami equation was higher in PLA/clay nanocomposite than in PLA/clay/RCF hybrid composite at the same crystallization temperature. The equilibrium melting temperature obtained by Hoffman–Weeks equation was almost same in both composites, whereas stability parameter was greater in hybrid composite than in nanocomposite. Activation energy of hybrid composite for crystallization was larger than that of nanocomposite. The value of nucleation parameter (Kg) and surface free energy (se) of hybrid composite were larger than nanocomposite, indicating that hybrid composite has a less folding regularity than nanocomposite. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
8.
The tensile properties of jute make it a suitable raw material for asphalt overlay (A/O) fabric. In this study, the thermal stability of jute under conditions of asphalt overlaying process was investigated and the compatibility of jute with asphalt was assessed through experimentation on jute–asphalt composites under mechanical and hygral loads. Fourier transform infra red (FTIR) spectroscopic study revealed probable chemical bonding between jute and asphalt. The test for ascertaining the capability of asphalt encasement for protecting jute against biodegradation under enzymatic attack was found positive. A 6‐month hygral treatment, of the jute–asphalt composite, showed significant increase in modulus of the material. The results indicate that although the strength of jute deteriorates by about 10% under asphalt overlaying condition, the overall tensile behavior of jute fabric–asphalt composite material is considerably superior to that of the pure jute fabric, even under biological and extended hygral loading conditions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   
9.
Extruded collagen fibers constitute a promising biomimetic scaffold for tissue engineering applications. In this study, we compared the structural, thermal, and mechanical properties of fibers produced from either NaCl or poly(ethylene glycol) with a number-average molecular weight of 8000 (PEG 8K), the only two coagents that have been used in the fabrication process. As novel, we report the fabrication of fibers with properties similar to native or synthetic fibers using other coagents. NaCl derived fibers were characterized by higher thermal stability (p < 0.026), stress (p < 0.001), and modulus (p < 0.0025) values than PEG 8K, whereas the latter yielded more extendable fibers (p < 0.012). Poly(ethylene glycol)s with number-average molecular weights of 200 and 1000 produced fibers with similar mechanical properties (p > 0.05) that were thinner (p < 0.033), stiffer (p < 0.022), and less extendable (p < 0.0002) than those of PEG 8K. Poly(vinyl alcohol) (PVA) with a number-average average molecular weight of 9–10,000 and PEG 8K yielded fibers with similar diameters and stress-at-break values (p > 0.05); however, the poly(ethylene glycol) derived fibers were more extendable (p < 0.0003), whereas the PVA fibers were stiffer (p < 0.029). Gum-arabic- and soluble-starch-derived fibers were of similar tensile strength, extendibility, and stiffness (p > 0.05). In this in vitro study, the thickest (p < 0.011) and the weakest (p < 0.0066) fibers were produced in the presence of sodium sulfate. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
10.
The phase behavior of a hybrid polymer network (HPN) composed of poly[(propylene glycol maleate)-co-(propylene glycol phthalate)] crosslinked with styrene and polyester–urethane crosslinked with methylene-bis-ortho-chloroaniline was examined. The correlation between phase separation and impact strength of the HPNs is discussed. The composition of HPNs has an effect on their properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号