首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   54篇
  国内免费   1篇
电工技术   2篇
化学工业   9篇
金属工艺   1篇
无线电   67篇
一般工业技术   83篇
自动化技术   1篇
  2023年   9篇
  2022年   1篇
  2021年   16篇
  2020年   24篇
  2019年   19篇
  2018年   15篇
  2017年   14篇
  2016年   5篇
  2015年   12篇
  2014年   15篇
  2013年   8篇
  2012年   3篇
  2011年   7篇
  2010年   9篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
1.
Biological environments use ions in charge transport for information transmission. The properties of mixed electronic and ionic conductivity in organic materials make them ideal candidates to transduce physiological information into electronically processable signals. A device proven to be highly successful in measuring such information is the organic electrochemical transistor (OECT). Previous electrophysiological measurements performed using OECTs show superior signal-to-noise ratios than electrodes at low frequencies. Subsequent development has significantly improved critical performance parameters such as transconductance and response time. Here, interdigitated-electrode OECTs are fabricated on flexible substrates, with one such state-of-the-art device achieving a peak transconductance of 139 mS with a 138 µs response time. The devices are implemented into an array with interconnects suitable for micro-electrocorticographic application and eight architecture variations are compared. The two best-performing arrays are subject to the full electrophysiological spectrum using prerecorded signals. With frequency filtering, kHz-scale frequencies with 10 µV-scale voltages are resolved. This is supported by a novel quantification of the noise, which compares the gate voltage input and drain current output. These results demonstrate that high-performance OECTs can resolve the full electrophysiological spectrum and suggest that superior signal-to-noise ratios could be achieved in high frequency measurements of multiunit activity.  相似文献   
2.
The desirable implantable neural interfaces can accurately record bioelectrical signals from neurons and regulate neural activities with high spatial/time resolution, facilitating the understanding of neuronal functions and dynamics. However, the electrochemical performance (impedance, charge storage/injection capacity) is limited with the miniaturization and integration of neural electrodes. The “crosstalk” caused by the uneven distribution of elctric field leads to lower electrical stimulation/recording efficiency. The mismatch between stiff electrodes and soft tissues exacerbates the inflammatory responses, thus weakening the transmission of signals. Though remarkable breakthroughs have been made through the incorporation of optimizing electrode design and functionalized nanomaterials, the chronic stability, and long-term activity in vivo of the neural electrodes still need further development. In this review, the neural interface challenges mainly on electrochemistry and biology are discussed, followed by summarizing typical electrode optimization technologies and exploring recent advances in the application of nanomaterials, based on traditional metallic materials, emerging 2D materials, conducting polymer hydrogels, etc., for enhancing neural interfaces. The strategies for improving the durability including enhanced adhesion and minimized inflammatory response, are also summarized. The promising directions are finally presented to provide enlightenment for high-performance neural interfaces in future, which will promote profound progress in neuroscience research.  相似文献   
3.
Sensor‐based chemical analyses commonly enlist either the molecular recognition capabilities of biology (e.g., enzyme biosensors) or advanced information processing algorithms (e.g., the electronic nose). Here, a hybrid approach is proposed in which an enzyme is used to “filter” chemical information and write this information to a film which then serves as a permanent storage medium that can be ‘read’ repeatedly, interactively, and by multiple sensor modalities. This approach is demonstrated by analyzing common dietary phenols that are reported to offer health benefits. Specifically, the enzyme tyrosinase is used to convert these phenols into reactive quinones that graft (i.e., write) to a chitosan film. Grafting can be detected by optical, mechanical, and electrochemical sensors. Importantly, grafting confers redox activity to the films and this redox activity can be probed interactively by advanced electrochemical methods that allow the intrinsic redox reactivities to be compared, redox interactions to be identified, and biologically relevant redox activities to be examined. The transfer of chemical and biological information to a film is envisioned to provide broader access to the extensive capabilities offered by sensor technologies and signal processing methodologies.  相似文献   
4.
5.
In this work we demonstrate, for the first time, the use of polylactic acid (PLA) as a biodegradable host matrix for the construction of the active emissive layer of organic light‐emitting diode (OLED) devices for potential use in bioelectronics. In this preliminary study, we report a robust synthesis of two fluorescent PLA derivatives, pyrene‐PLA ( AH10 ) and perylene‐PLA ( AH11 ). These materials were prepared by the ring opening polymerisation of l ‐lactide with hydroxyalkyl‐pyrene and hydroxyalkyl‐perylene derivatives using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene as catalyst. OLEDs were fabricated from these materials using a simple device architecture involving a solution‐processed single‐emitting layer in the configuration ITO/PEDOT:PSS/PVK:OXD‐7 (35%): AH10 or AH11 (20%)/TPBi/LiF/Al (ITO, indium tin oxide; PEDOT:PSS, poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonic acid); PVK, poly(vinylcarbazole); OXD‐7, (1,3‐phenylene)‐bis‐[5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole]; TPBi, 2,2′,2″‐(1,3,5‐benzenetriyl)tris(1‐phenyl‐1H‐benzimidazole)). The turn‐on voltage for the perylene OLED at 10 cd m–2 was around 6 V with a maximum brightness of 1200 cd m–2 at 13 V. The corresponding external quantum efficiency and device current efficiency were 1.5% and 2.8 cd A–1 respectively. In summary, this study provides proof of principle that OLEDs can be constructed from PLA, a readily available and renewable bio‐source. © 2020 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.  相似文献   
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号