首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   36篇
  国内免费   1篇
化学工业   81篇
建筑科学   1篇
能源动力   27篇
轻工业   36篇
石油天然气   4篇
无线电   2篇
一般工业技术   3篇
冶金工业   1篇
  2023年   2篇
  2022年   5篇
  2021年   6篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   8篇
  2016年   15篇
  2015年   12篇
  2014年   12篇
  2013年   15篇
  2012年   17篇
  2011年   11篇
  2010年   15篇
  2009年   12篇
  2008年   1篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
1.
In order to produce highly concentrated bioethanol by pervaporation using an ethanol‐permselective silicalite membrane, techniques to suppress adsorption of succinic acid, which is a chief by‐product of ethanol fermentation and causes the deterioration in pervaporation performance, onto the silicalite crystals was investigated. The amount adsorbed increased as the pH of the aqueous succinic acid solution decreased. The pervaporation performance also decreased with decreasing pH when the ternary mixtures of ethanol/water/succinic acid were separated. Using silicalite membranes individually coated with two types of silicone rubber, pervaporation performance was significantly improved in the pH range of 5 to 7, when compared with that of non‐coated silicalite membranes in ternary mixtures of ethanol/water/succinic acid. Moreover, when using a silicalite membrane double‐coated with the two types of silicone rubber, pervaporation performance was stabilized at lower pH values. In the separation of bioethanol by pervaporation using the double‐coated silicalite membrane, removal of accumulated substances having an ultraviolet absorption maximum at approximately 260 nm from the fermentation broth proved to be vital for efficient pervaporation. Copyright © 2005 Society of Chemical Industry  相似文献   
2.
The challenges of implementing biorefineries on a global scale include socioeconomic, financial, and technological constraints. In particular, the development of biorefineries is tightly linked to the continued availability of fermentation raw materials. These constraints can be relaxed by the use of diverse raw materials, while advances that confer higher flexibility would enable biotechnological plant managers to swiftly react to volatile markets. In conventional processes, Saccharomyces cerevisiae grows on a relatively limited range of substrates, and produces only a single product—ethanol. Given the observed maturity of the S. cerevisiae fermentation technology, alternatives to baker's yeast may be needed to tip the economic balance in favour of biotechnological ethanol. These alternative fermentation technologies may allow a greater diversity of substrates to be used to produce an individually tailored mix of ethanol and other chemicals. Copyright © 2007 Society of Chemical Industry  相似文献   
3.
With the aim of determining the possibilities of directly upgrading the liquid obtained from carbohydrate fermentation, the effect of operating conditions (temperature, space time, water content in the feed) has been studied in the catalytic transformation of aqueous ethanol into hydrocarbons on an HZSM‐5 zeolite in an isothermal fixed bed reactor. Special attention has been paid to the effect of water content on the yield, product distribution and catalyst deactivation. Although deactivation by coke decreases as the water content is increased, this content must be limited at 450 °C and higher temperatures in order to avoid irreversible deactivation of the catalyst by dealumination. © 2002 Society of Chemical Industry  相似文献   
4.
The design of sustainable supply chains, which recently emerged as an active area of research in process systems engineering, is vital to ensure sustainable development. Despite past and ongoing efforts, the available methods often overlook impacts beyond climate change or incorporate them via standard life cycle assessment metrics that are hard to interpret from an absolute sustainability viewpoint. We here address the design of biomass supply chains considering critical ecological limits of the Earth—planetary boundaries—which should never be surpassed by anthropogenic activities. Our method relies on a mixed-integer linear program that incorporates a planetary boundaries-based damage model to quantify absolute sustainability precisely. We apply this approach to the sugarcane-to-ethanol industry in Argentina, identifying the optimal combination of technologies and network layout that minimize the impact on these ecological boundaries. Our framework can find applications in a wide range of supply chain problems related to chemicals and fuels production, energy systems, and agriculture planning.  相似文献   
5.
Energy demand is increasing by the years. Population's needs and technological investments bring the new approach about generating energy. It is considered that fossil fuels will not be able to respond to all energy requirements after approximately 150 years. Turkey imports nearly all of its petroleum and so this causes major economic problems. Turkey, as a major cereal producer, has a huge potential to grow energy crops and other cellulosic biomaterials and can obtain plant's residues, which are suitable to produce second generation bioethanol (SGB). With domestic production, bioethanol can reduce the dependence of petroleum for Turkey, and greenhouse gas emissions can be decreased. Taking into account Turkey's situation in fuel–oil consumption, costliness of gasoline and environmentally hazardous specification of fossil fuels, bioethanol gains more importance and increases in value. Especially, SGB production is rising. Foodstuffs are valuable, and producing ethanol from directly those materials can cause a crisis in Turkey because lignocellulosic bioethanol is becoming prominent. In this regard, bioethanol production in Turkey becomes a major alternative to petroleum and may be a key to new and clean energy source. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
6.
7.
Abstract: Sorghum bagasse samples from two sets (n6 and bmr6; n18 and bmr18) of wild-type and corresponding “brown midrib” (bmr) mutant strains of sweet sorghum were evaluated as the feedstock for fermentable sugar recovery via the calcium capturing by carbonation (CaCCO) process, which involves Ca(OH)2 pretreatment of bagasse with subsequent neutralization with CO2 for enzymatic saccharification. Saccharification tests under various pretreatment conditions of the CaCCO process at different Ca(OH)2 concentrations, temperatures or residence periods indicated that bmr strains are more sensitive to the pretreatment than their counterparts are. It is expected that variant bmr6 is more suitable for glucose recovery than its wild-type counterpart because of the higher glucan content and better glucose recovery with less severe pretreatment. Meanwhile, bmr18showed higher scores of glucose recovery than its counterpart did, only at low pretreatment severity, and did not yield higher sugar recovery under the more severe conditions. The trend was similar to that of xylose recovery data from the two bmr strains. The advantages of bmr strains were also proven by means of simultaneous saccharification and fermentation of CaCCO-pretreated bagasse samples by pentose-fermenting yeast strain Candida shehatae Cs 4R. The amounts needed for production of 1 L of ethanol from n6, bmr6, n18, and bmr18samples were estimated as 4.11, 3.46, 4.03, and 3.95 kg, respectively. The bmr strains seem to have excellent compatibility with the CaCCO process for ethanol production, and it is expected that integrated research from the feedstock to bioprocess may result in breakthroughs for commercialization.  相似文献   
8.
Because of rapid growth in population and industrialization, worldwide ethanol demand is increasing continuously. The first‐generation and second‐generation biofuels are unable to meet the global demand of bioethanol production because of their primary value of food and feed. Therefore, algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy because of the accumulating high starch/cellulose and because they are widely distributed in nature. The focus of this paper is to review the production and recent advances in research and development in the algae bioethanol, including pretreatment, hydrolysis, and fermentation of algae biomass. Despite the many developments made in the recent years, commercialization of algal bioethanol remains challenging chiefly because of the techno‐economic constraints. Technological breakthroughs in all major aspects must be overcome before it can be a successfully large‐scale and commercialized product. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
9.
分别采用硫酸盐法(KP)和绿液法(GL)蒸煮火炬松,并以碳酸钠为碱性介质进行氧脱木素,所得浆料分别标记为KP-OC浆和GL-OC浆,分析了这两种浆料的化学组分,并对这两种浆料进行酶解以提取可发酵单糖。结果显示,在120℃氧脱木素4 h所得的KP-OC浆和GL-OC浆的木素脱出率均明显优于相近条件下以氢氧化钠为碱性介质且脱木素1 h的浆料。对于GL-OC浆和KP-OC浆,当酶用量为10 FPU/g时,酶解单糖得率、总单糖提取率最高分别可达73.2%和95.8%、72.4%和75.7%,均优于相近条件下以氢氧化钠为碱性介质氧脱木素的浆料。  相似文献   
10.
研究了以刚毛藻为原料制备生物乙醇的工艺.结果表明,刚毛藻预处理条件为:刚毛藻与2%(w/v)氢氧化钠混合,85℃反应80 min;酶解条件:藻粉质量浓度35g/L,纤维素酶用量80 U/g底物,加入5 g/L Tween-80,此时酶解率为61.74%;在30℃下培养40 h,发酵液中乙醇质量浓度为12.15 g/L,转化率42.63%,达到乙醇理论转化率的83.42%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号