首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学工业   2篇
  2021年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 203 毫秒
1
1.
Low-dose ozone acts as a bioregulator in chronic inflammatory diseases, biochemically characterized by high oxidative stress and a blocked regulation. During systemic applications, “Ozone peroxides” are able to replace H2O2 in its specific function of regulation, restore redox signaling, and improve the antioxidant capacity. Two different mechanisms have to be understood. Firstly, there is the direct mechanism, used in topical treatments, mostly via radical reactions. In systemic treatments, the indirect, ionic mechanism is to be discussed: “ozone peroxide” will be directly reduced by the glutathione system, informing the nuclear factors to start the regulation. The GSH/GSSG balance outlines the ozone dose and concentration limiting factor. Antioxidants are regulated, and in the case of inflammatory diseases up-regulated; cytokines are modulated, here downregulated. Rheumatoid arthritis RA as a model for chronic inflammation: RA, in preclinical and clinical trials, reflects the pharmacology of ozone in a typical manner: SOD (superoxide dismutase), CAT (catalase) and finally GSH (reduced glutathione) increase, followed by a significant reduction of oxidative stress. Inflammatory cytokines are downregulated. Accordingly, the clinical status improves. The pharmacological background investigated in a remarkable number of cell experiments, preclinical and clinical trials is well documented and published in internationally peer reviewed journals. This should encourage clinicians to set up clinical trials with chronic inflammatory diseases integrating medical ozone as a complement.  相似文献   
2.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号