首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   1篇
  国内免费   2篇
综合类   3篇
化学工业   40篇
轻工业   4篇
石油天然气   10篇
无线电   1篇
冶金工业   4篇
自动化技术   2篇
  2020年   1篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   6篇
  2005年   4篇
  2004年   7篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1994年   2篇
  1991年   1篇
  1984年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
以固体超强酸SO2-4/TiO2 WO3为催化剂,通过丁酮和1,2 丙二醇反应合成了丁酮1,2 丙二醇缩酮。探讨了SO2-4/TiO2 WO3对缩酮反应的催化活性,研究了酮醇摩尔比、催化剂用量、反应时间对产品收率的影响。实验表明,在n(丁酮)∶n(1,2 丙二醇)=1∶1 5,催化剂用量为反应物料总质量的0 7%,环己烷为带水剂,反应时间1 0h的优化条件下,丁酮1,2 丙二醇缩酮的收率可达85 7%。  相似文献   
2.
磷钨酸催化合成丁酮乙二醇缩酮   总被引:5,自引:1,他引:5  
以磷钨酸H3 PW12 O40 为催化剂 ,通过丁酮和乙二醇反应合成丁酮乙二醇缩酮。探讨了H3 PW12 O40 对缩酮反应的催化活性 ,较系统地研究了酮醇物质的量比、催化剂用量、反应时间等因素对产品收率的影响。实验表明 :H3 PW12 O40 是合成丁酮乙二醇缩酮的良好催化剂 ,在n(酮 )∶n(醇 ) =1∶1.75 ,催化剂用量为反应物料总质量的 1.2 5 % ,环己烷为带水剂 ,反应时间 2 .0h ,反应温度 72~ 96℃的优化条件下 ,丁酮乙二醇缩酮的收率可达 5 9.5 %。  相似文献   
3.
活性炭共吸附现象对有机蒸气穿透容量的影响   总被引:3,自引:0,他引:3  
在空气避有机蒸气的气相色谱分析方法研究中,为获得可靠的采样效果,探讨了活性炭对共存有机蒸气的共吸附与穿透容量的关系,试验了四种有机蒸气共存时和组分的有采样效率。结果表明,共吸附使所有共存有机蒸气的穿透容量下降,共吸附物质愈多,穿透窝量下降愈严重。对二种和四种有机蒸气的共吸附,使丙酮的穿透容量下降21.9%和41.7%,四组分共存时,丙酮,丁酮,环已酮、甲苯的穿透窝量分别为5.6、5.0、9.7、1  相似文献   
4.
磷钨酸掺杂聚苯胺催化剂催化合成丁酮乙二醇缩酮   总被引:1,自引:1,他引:1  
报道了磷钨酸掺杂聚苯胺催化剂H3PW12O40/PAn的制备,通过丁酮和乙二醇反应合成了丁酮乙二醇缩酮,探讨了磷钨酸掺杂聚苯胺催化剂对缩酮反应的催化活性,较系统地研究了原料量比、催化剂用量、反应时间诸因素对产品收率的影响。实验表明:磷钨酸掺杂聚苯胺催化剂是合成丁酮乙二醇缩酮的良好催化剂,在n(乙二醇):n(丁酮)=2:1,催化剂用量为反应物料总质量的0.5%,环己烷为带水剂,反应时间2.5h的优化条件下,丁酮乙二醇缩酮的收率可达67.2%。  相似文献   
5.
TiSiW12O40/TiO2微波催化合成丁酮乙二醇缩酮   总被引:8,自引:0,他引:8  
以TiSiW12O40/TiO2为固相催化剂,通过微波催化丁酮和乙二醇反应快速合成丁酮乙二醇缩酮,较系统地研究了酮醇物质的量比,催化剂TiSiW12O40/TiO2的用量,反应功率和反应时间等诸因素对产品产率的影响。实验表明:TiSiW12O40/TiO2是合成丁酮乙二醇缩酮的良好催化剂,在环己烷为带水剂n(酮)∶n(醇)=1∶1.25,催化剂的用量为反应物总质量的0.5%,反应功率为480 W,反应时间为35 min的优化条件下,丁酮乙二醇缩酮的收率可达87.16%。  相似文献   
6.
活性炭对丁酮的吸附动力学研究   总被引:1,自引:0,他引:1  
研究了2种活性炭(木质活性炭和煤质活性炭)对丁酮的吸附,重点考察了活性炭的吸附时间、吸附温度和丁酮载气流量对丁酮吸附的影响,并用准一级、准二级、Elovich和Bangham 4种动力学模型对活性炭在不同温度条件下对丁酮的吸附行为进行了动力学拟合,确定其动力学吸附模型。实验表明:不同的活性炭对丁酮的吸附过程不同;活性炭对丁酮的吸附是一个吸附和解吸同时存在的过程,当吸附速率和解吸速率相等时,该过程达到吸附平衡;随着吸附温度的升高,活性炭对丁酮的饱和吸附量逐渐降低,说明活性炭对丁酮的吸附过程为放热反应;丁酮载气流量对活性炭吸附丁酮达到饱和的时间以及吸附速率有影响,对AC-1的最终饱和吸附量影响显著,对AC-2的最终饱和吸附量没有显著影响。这2种活性炭吸附丁酮最适宜的吸附温度均为303 K,最佳的载气流量为400 mL/min。在不同温度下对活性炭吸附丁酮的过程进行动力学分析,发现Bangham方程计算得到的相关系数R2大于0.99,因此,活性炭对丁酮的吸附动力学方程符合Bangham动力学方程。  相似文献   
7.
硅钨酸掺杂聚苯胺催化剂催化合成丁酮乙二醇缩酮   总被引:5,自引:2,他引:5  
报道了以H4SiW12O40(硅钨酸)/PAn(聚苯胺)为催化剂,通过丁酮和乙二醇反应合成了丁酮乙二醇缩酮,探讨了H4SiW12O40/PAn对缩酮反应的催化活性,较系统地研究了酮醇物质的量比,催化剂用量,反应时间诸因素对产品收率的影响。实验表明:在n酮:n醇=1:1.5,催化剂用量为反应物料总质量的0.60%,环己烷为带水剂,反应时间2.0h的优化条件下,丁酮乙二醇缩酮的收率可达70.1%。  相似文献   
8.
在2 5 0mL不锈钢高压反应釜中,以TS 1分子筛为催化剂,丁酮、氨水和过氧化氢进行氨氧化合成丁酮肟。试验研究了溶剂、反应温度、氨酮比和过氧化氢加料方式对丁酮的转化率和丁酮肟的选择的影响。结果表明,氨和丁酮的摩尔比为2. 15 ,反应温度70℃,H2 O2 采用连续进料的条件下,反应的转化率和选择性分别达到99 .12 %和10 0 . 0 0 %。表明在温和条件下TS 1催化丁酮氨氧化制丁酮肟是可行的。  相似文献   
9.
为了给以丙三醇为溶剂萃取分离丁酮-水体系的过程设计和流程模拟计算提供基础数据,在常压,20,40,60℃下,测定了丁酮-水-丙三醇三元体系的液液平衡数据,得到了三元体系的共轭相组成并由此绘得相平衡曲线。实验数据用UNIQUAC和NRTL模型进行了关联,利用关联出的模型参数计算了相应的液相组成,并与实验值比较,其平均偏差小于0.003 8,计算值与实验数据吻合良好。求得了溶剂对溶质的选择性系数,验证了丙三醇是液液萃取分离丁酮-水的良好溶剂。  相似文献   
10.
The diphenylzinc-butanone system was used as polymerization catalyst for some oxiranes in benzene solution at 60°C. This system is greatly influenced by the molar ratio of butanone to diphenylzinc, and the maximum catalytic activity for propylene oxide and ethylene oxide was found for a ratio of unity. GPC results strongly suggest the presence of more than one active species for the system. 13C NMR analysis indicates that the resulting poly(propylene oxide) has a head-to-tail arrangement. For the polymerization of propylene oxide with butanone/diphenylzinc = 1, after an initial induction period, the reaction was first-order with respect to monomer with k = 2·51 × 10?5 s?1. Ethylene oxide polymerizations using butanone/diphenylzinc = 1 and 5 were also first-order with respect to monomer after an initial induction period with k = 7·80 × 10?6 s?1 and k = 5·71 × 10?6 s?1, respectively. The diphenylzinc-butanone system was not an effective catalyst for styrene oxide polymerization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号