首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   3篇
  国内免费   2篇
化学工业   42篇
金属工艺   1篇
机械仪表   1篇
轻工业   3篇
一般工业技术   1篇
冶金工业   4篇
自动化技术   1篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   22篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有53条查询结果,搜索用时 234 毫秒
1.
2-Monoacylglycerol (2-MAG) is one of the digestion products of dietary lipids. We recently demonstrated that a 2-MAG, 2-arachidonoyl glycerol (2-AG) potently stimulated cholecystokinin (CCK) secretion via cannabinoid receptor 1 (CB1) in a murine CCK-producing cell line, STC-1. CCK plays a crucial role in suppressing postprandial gastric emptying. To examine the effect of 2-AG on gastric emptying, we performed acetaminophen and phenol red recovery tests under oral or intraperitoneal administration of 2-AG in mice. Orally administered 2-AG (25 mg/kg) suppressed the gastric emptying rate in mice, as determined by the acetaminophen absorption test and phenol red recovery test. Intraperitoneal administration of a cholecystokinin A receptor antagonist (0.5 mg/kg) attenuated the gastric inhibitory emptying effect. In addition, both oral (10 mg/kg) and intraperitoneal (0.5 mg/kg) administration of a CB1 antagonist counteracted the 2-AG-induced gastric inhibitory effect. Furthermore, intraperitoneal 2-AG (25 mg/kg) suppressed gastric emptying. These results indicate that 2-AG exhibits an inhibitory effect on gastric emptying in mice, possibly mediated by stimulating both CCK secretion via CB1 expressed in CCK-producing cells and acting on CB1 expressed in the peripheral nerves. Our findings provide novel insights into the 2-MAG-sensing mechanism in enteroendocrine cells and the physiological role of 2-MAG.  相似文献   
2.
In recent years, cannabinoid type 2 receptors (CB2R) have emerged as promising therapeutic targets in a wide variety of diseases. Selective ligands of CB2R are devoid of the psychoactive effects typically observed for CB1R ligands. Based on our recent studies on a class of pyridazinone 4‐carboxamides, further structural modifications of the pyridazinone core were made to better investigate the structure–activity relationships for this promising scaffold with the aim to develop potent CB2R ligands. In binding assays, two of the new synthesized compounds [6‐(3,4‐dichlorophenyl)‐2‐(4‐fluorobenzyl)‐cisN‐(4‐methylcyclohexyl)‐3‐oxo‐2,3‐dihydropyridazine‐4‐carboxamide ( 2 ) and 6‐(4‐chloro‐3‐methylphenyl)‐cisN‐(4‐methylcyclohexyl)‐3‐oxo‐2‐pentyl‐2,3‐dihydropyridazine‐4‐carboxamide ( 22 )] showed high CB2R affinity, with Ki values of 2.1 and 1.6 nm , respectively. In addition, functional assays of these compounds and other new active related derivatives revealed their pharmacological profiles as CB2R inverse agonists. Compound 22 displayed the highest CB2R selectivity and potency, presenting a favorable in silico pharmacokinetic profile. Furthermore, a molecular modeling study revealed how 22 produces inverse agonism through blocking the movement of the toggle‐switch residue, W6.48.  相似文献   
3.
Single‐particle tracking with quantum dots (QDs) constitutes a powerful tool to track the nanoscopic dynamics of individual cell membrane components unveiling their membrane diffusion characteristics. Here, the nano‐resolved population dynamics of QDs is exploited to reconstruct the topography and structural changes of the cell membrane surface with high temporal and spatial resolution. For this proof‐of‐concept study, bright, small, and stable biofunctional QD nanoconstructs are utilized recognizing the endogenous neuronal cannabinoid receptor 1, a highly expressed and fast‐diffusing membrane protein, together with a commercial point‐localization microscope. Rapid QD diffusion on the axonal plasma membrane of cultured hippocampal neurons allows precise reconstruction of the membrane surface in less than 1 min with a spatial resolution of tens of nanometers. Access of the QD nanoconstructs to the synaptic cleft enables rapid 3D topological reconstruction of the entire presynaptic component. Successful reconstruction of membrane nano‐topology and deformation at the second time‐scale is also demonstrated for HEK293 cell filopodia and axons. Named “nanoPaint,” this super‐resolution imaging technique amenable to any endogenous transmembrane target represents a versatile platform to rapidly and accurately reconstruct the cell membrane nano‐topography, thereby enabling the study of the rapid dynamic phenomena involved in neuronal membrane plasticity.  相似文献   
4.
Our study aimed to examine the effects of hypertension and the chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on vascular function and the endocannabinoid system in spontaneously hypertensive rats (SHR). Functional studies were performed on small mesenteric G3 arteries (sMA) and aortas isolated from SHR and normotensive Wistar Kyoto rats (WKY) treated with URB597 (1 mg/kg; twice daily for 14 days). In the aortas and sMA of SHR, endocannabinoid levels and cannabinoid CB1 receptor (CB1R) expression were elevated. The CB1R antagonist AM251 diminished the methanandamide-evoked relaxation only in the sMA of SHR and enhanced the vasoconstriction induced by phenylephrine and the thromboxane analog U46619 in sMA in SHR and WKY. In the sMA of SHR, URB597 elevated anandamide levels, improved the endothelium-dependent vasorelaxation to acetylcholine, and in the presence of AM251 reduced the vasoconstriction to phenylephrine and enhanced the vasodilatation to methanandamide, and tended to reduce hypertrophy. In the aortas, URB597 elevated endocannabinoid levels improved the endothelium-dependent vasorelaxation to acetylcholine and decreased CB1R expression. Our study showed that hypertension and chronic administration of URB597 caused local, resistance artery-specific beneficial alterations in the vascular endocannabinoid system, which may bring further advantages for therapeutic application of pharmacological inhibition of FAAH.  相似文献   
5.
6.
G protein-coupled receptor 55 (GPR55) is a recently deorphanized lipid- and peptide-sensing receptor. Its lipidic endogenous agonists belong to lysoglycerophospholipids, with lysophosphatidylinositol (LPI) being the most studied. Peptide agonists derive from fragmentation of pituitary adenylate cyclase-activating polypeptide (PACAP). Although GPR55 and its ligands were implicated in several physiological and pathological conditions, their biological function remains unclear. Thus, the aim of the study was to conduct a large-scale re-analysis of publicly available gene expression datasets to identify physiological and pathological conditions affecting the expression of GPR55 and the production of its ligands. The study revealed that regulation of GPR55 occurs predominantly in the context of immune activation pointing towards the role of the receptor in response to pathogens and in immune cell lineage determination. Additionally, it was revealed that there is almost no overlap between the experimental conditions affecting the expression of GPR55 and those modulating agonist production. The capacity to synthesize LPI was enhanced in various types of tumors, indicating that cancer cells can hijack the motility-related activity of GPR55 to increase aggressiveness. Conditions favoring accumulation of PACAP-derived peptides were different than those for LPI and were mainly related to differentiation. This indicates a different function of the two agonist classes and possibly the existence of a signaling bias.  相似文献   
7.
Nicotine, the main psychoactive component in tobacco smoke, plays a major role in tobacco addiction, producing a high morbidity and mortality in the world. A great amount of research has been developed to elucidate the neural pathways and neurotransmitter systems involved in such a complex addictive behavior. The endocannabinoid system, which has been reported to participate in the addictive properties of most of the prototypical drugs of abuse, is also implicated in nicotine dependence. This review summarizes and updates the main behavioral and biochemical data involving the endocannabinoid system in the rewarding properties of nicotine as well as in nicotine withdrawal and relapse to nicotine-seeking behavior. Promising results from preclinical studies suggest that manipulation of the endocannabinoid system could be a potential therapeutic strategy for treating nicotine addiction.  相似文献   
8.
The endocannabinoid system is a component of the neuroprotective mechanisms that an organism displays after traumatic brain injury (TBI). A diurnal variation in several components of this system has been reported. This variation may influence the recovery and survival rate after TBI. We have previously reported that the recovery and survival rate of rats is higher if TBI occurs at 1:00 than at 13:00. This could be explained by a diurnal variation of the endocannabinoid system. Here, we describe the effects of anandamide administration in rats prior to the induction of TBI at two different times of the day: 1:00 and 13:00. We found that anandamide reduced the neurological damage at both times. Nevertheless, its effects on bleeding, survival, food intake, and body weight were dependent on the time of TBI. In addition, we analyzed the diurnal variation of the expression of the cannabinoid receptors CB1R and CB2R in the cerebral cortex of both control rats and rats subjected to TBI. We found that CB1R protein was expressed more during the day, whereas its mRNA level was higher during the night. We did not find a diurnal variation for the CB2R. In addition, we also found that TBI increased CB1R and CB2R in the contralateral hemisphere and disrupted the CB1R diurnal cycle.  相似文献   
9.
Reports an error in "Sensory gating impairments in heavy cannabis users are associated with altered neural oscillations" by Chad R. Edwards, Patrick D. Skosnik, Adam B. Steinmetz, Brian F. O’Donnell and William P. Hetrick (Behavioral Neuroscience, 2009[Aug], Vol 123[4], 894-904). An incorrect version of the abstract was published. The correct version follows: Central cannabinoid receptors mediate neural oscillations and are localized to networks implicated in auditory P50 sensory gating, including the hippocampus and neocortex. The current study examined whether neural oscillations evoked by the paired clicks (S1, S2) are associated with abnormal P50 gating reported in cannabis users. Seventeen heavy cannabis users and 16 cannabis na?ve controls participated. Analyses included P50 amplitudes, and time-frequency analyses (event-related spectral perturbations, ERSPs; intertrial coherence, ITC). Consistent with prior studies, cannabis users exhibited reduced P50 gating. The ERSP analysis yielded attenuated high frequency activity in the beta range (13–29 Hz) post-S1 and in the gamma range (30–50 Hz) post-S2 in the cannabis group, compared with the control group. Greater levels of cannabis use were positively associated with high P50 ratios and negatively with post-S2 ERSP gamma power. Findings suggest that heavy cannabis use is associated with aberrant beta and gamma activity in the dual-click procedure, which corroborates recent work demonstrating disruption of beta/gamma by cannabinoid receptor (CB1) agonists in a rat analogue of this task and highlights the translational potential of the dual-click procedure. (The following abstract of the original article appeared in record 2009-10928-023.) Cannabis use was positively associated with high P50 ratios and negatively with post-S2 event-related spectral perturbation (ERSP) gamma power. Findings suggest that heavy cannabis use is associated with aberrant beta and gamma activity in the dual-click procedure, which corroborates recent work demonstrating central cannabinoid receptors mediate neural oscillations and are localized to networks implicated in auditory P50 sensory gating, including the hippocampus and neocortex. The current study examined whether neural oscillations evoked by the paired clicks (S1, S2) are associated with abnormal P50 gating reported in cannabis users. Seventeen heavy cannabis users and 16 cannabis naive controls participated. Analyses included P50 amplitudes, and time-frequency analyses (ERSPs; intertrial coherence, ITC). Consistent with prior studies, cannabis users exhibited reduced P50 gating. The ERSP analysis yielded attenuated high frequency activity in the beta range (13–29 Hz) post-S1 and in the gamma range (30–50 Hz) post-S2 in the cannabis group, compared with the control group. Greater levels of disruption of beta/gamma by cannabinoid receptor (CB1) agonists in a rat analogue of this task and highlights the translational potential of the dual-click procedure. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
10.
We recently discovered and reported a series of N‐alkyl‐isatin acylhydrazone derivatives that are potent cannabinoid receptor 2 (CB2) agonists. In an effort to improve the druglike properties of these compounds and to better understand and improve the treatment of neuropathic pain, we designed and synthesized a new series of 2,3‐dihydro‐1‐benzofuran derivatives bearing an asymmetric carbon atom that behave as potent selective CB2 agonists. We used a multidisciplinary medicinal chemistry approach with binding mode prediction through ligand‐steered modeling. Enantiomer separation and configuration assignment were carried out for the racemic mixture for the most selective compound, MDA7 (compound 18 ). It appeared that the S enantiomer, compound MDA104 (compound 33 ), was the active enantiomer. Compounds MDA42 (compound 19 ) and MDA39 (compound 30 ) were the most potent at CB2. MDA42 was tested in a model of neuropathic pain and exhibited activity in the same range as that of MDA7. Preliminary ADMET studies for MDA7 were performed and did not reveal any problems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号