首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   4篇
  国内免费   1篇
化学工业   28篇
金属工艺   37篇
石油天然气   4篇
无线电   1篇
一般工业技术   9篇
冶金工业   1篇
自动化技术   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   9篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   9篇
  1998年   1篇
  1997年   5篇
  1995年   1篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
排序方式: 共有81条查询结果,搜索用时 0 毫秒
1.
The solubility of sulfur in chromia has been studied in H2-H2O-H2S tagged with35S at 973 and 1173 K at low oxygen and sulfur partial pressures typical for coal gasification-systems. For monocrystalline samples, it has been shown that sulfur-containing species are only present adsorbed on the surface of the specimens and can be removed by ultrasonic cleaning in acetone. The surface coverage after 4 weeks of exposure to H2-H2O-H2S was between 2.8 and 19.3% of a monolayer. In polycrystalline chromia, sulfur was located only in pores and cracks of the sample. In dense, compact areas of the specimens the solubility of sulfur was below the detection limit of autoradiography, which was estimated to be better than 0.17 ppm.  相似文献   
2.
3.
4.
Recently it was proposed, that the hampered formation of external protective chromia scales on FeCr‐alloys in water vapour containing, low‐pO2 gases is correlated with enhanced internal oxidation of chromium. In the present study the internal oxidation kinetics of Fe? 10Cr (in mass%) during isothermal oxidation in Ar? H2? H2O mixtures at temperatures in the range 800–1050 °C has been investigated. It was found that the tendency for Cr to become internally oxidized decreased with decreasing temperature. At the higher test temperatures the internal oxide precipitates consisted of Fe/Cr‐spinel. With decreasing temperature the precipitates near the oxidation front gradually exhibited increasing amounts of chromia. At 900 °C the oxidation morphology in the Ar? H2 base gas mixture changed from exclusive internal oxidation of Cr at a water vapour content of 2% towards a combined internal Cr oxidation and external Fe‐oxide formation at higher water vapour partial pressures.  相似文献   
5.
Abstract

Breakaway oxidation of 15–18 % Cr ferritic stainless steels occurring in water vapour is described in the temperature range 800–1000°C. The failure of the protective chromia scale leads to iron oxide(s) nodule formation with accelerated kinetics. Characterisation of the (Fe,Cr)2O3 initial oxide scale by Raman spectroscopy and photoelectrochemistry shows chemical evolution with oxidation time, with increasing Cr/Fe ratio before haematite suddenly appears at the steel-oxide interface. The mechanisms for such a phenomenon are discussed, first on a thermodynamic point of view, where it is shown that chromium (VI) volatilisation or chromia destabilisation by stresses are not operating. It is rather concluded that mechanical cracking or internal interface decohesion provide conditions for haematite stabilisation. From a kinetic point of view, rapid haematite growth in water vapour compared to chromia is thought to be the result of surface acidity difference of these two oxides.  相似文献   
6.
High-surface area and well-ordered mesoporous Cr-incorporated SBA-15 (Cr-SBA-15) and SBA-15-supported chromia (CrOx/SBA-15) with Cr surface density = 0.05–1.11 Cr-atom/nm2 have been prepared, respectively, using the one-step synthesis and incipient wetness impregnation method, and characterized by AAS, XRD, BET, ESEM, TEM, XPS, laser Raman, UV-Vis, FT-IR, and H2-TPR. It is observed that the Cr-SBA-15 and CrOx/SBA-15 samples showed an evolution of surface morphology from long chain-shaped to short rod-like and further to an irregularly spherical architecture at elevated Cr content, which might arise from the interaction of Cr ions or CrOx domains with SBA-15. There were co-presence of tetrahedrally coordinated mono- and poly-chromate (Cr6+) as well as octahedrally coordinated Cr3+ species in Cr-SBA-15 and CrOx/SBA-15, with the Cr6+ species being dominant at Cr surface density ≤0.22 Cr-atom/nm2 in Cr-SBA-15 and Cr ≤0.54 Cr-atom/nm2 in CrOx/SBA-15, whereas the amount of the Cr3+ species increased markedly at Cr surface density ≥0.53 Cr-atom/nm2 due to the formation of crystal Cr2O3 phase. Maximal Cr incorporation into Cr-SBA-15 and one monolayer surface CrOx coverage on CrOx/SBA-15 occurred at Cr surface density ≤0.53 Cr-atom/nm2 and <1.11 Cr-atom/nm2, respectively. The CrOx/SBA-15 samples exhibited better reducibility than the Cr-SBA-15 samples, with the best reducibility exhibited at Cr surface densities of 0.54 and 0.12 Cr-atom/nm2, respectively.  相似文献   
7.
A variety of metallic and oxide coatings were deposited under various conditions on 1020 mild steel substrate by conventional plasma spraying. The coating thickness, microhardness, cohesion and adhesion failure loads, friction coefficient, and abrasive wear resistance were evaluated. The coatings were classified as follows, in order of decreasing microhardness and wear resistance: alumina, chromia, 316 stainless steel, Ni-5% Al, elemental aluminum and aluminum-polyester. Wear resistance increased with increasing microhardness and decreasing friction coefficient. The microhardness and wear resistance of high-velocity oxy-fuel (HVOF) diamond jet (DJ)-sprayed aluminum were found to be superior to those of plasma-sprayed aluminum. Plasma or flame-sprayed metallic coatings adhered well to the substrate. The cohesion, adhesion, microhardness, and wear resistance of alumina coatings exceeded those of equally thick chromia coatings.  相似文献   
8.
A series of Fe–15Cr–(2–3)Mo–(0.7–2.5)C (compositions in weight percent) steels was oxidised at 850°C and PO_2 = 5.8 × 10–20 atm, where iron oxide is unstable. All grew external Cr2O3 scales according to parabolic kinetics. Depletion of chromium from alloy subsurface regions led to dissolution of chromium-rich carbides if the original alloy carbon level was less than 1.2%. Simultaneous decarburisation caused a transformation of the original austenitic or austenoferritic structure into single-phase ferrite, stabilised by the molybdenum. Diffusion analysis of the concentration profiles within this transformed zone led to satisfactory agreement with the known diffusion coefficient for chromium in ferrite. At high carbon levels, decarburisation was slow, resulting in low chromium concentrations at the internal alloy–carbide interfaces. In these cases, the carbide dissolution did not proceed and chromia scaling rates were slowed.  相似文献   
9.
Long term, cyclic oxidation studies of three high – Cr, ferritic steels were carried out at 800°C and 900°C in air. It was found that with decreasing sample thickness the life time of the mentioned alloys decreases due to breakaway phenomena. This effect is caused by faster exhaustion of the chromium reservoir from the bulk alloy in case of thinner components. The observed life time limits can be predicted with reasonable accuracy by a theoretical model, using oxide growth rate parameters, initial alloy Cr content and critical Cr content required for protective chromia scale formation. In the calculation it has, however, to be taken into account that the oxidation rates of the steels increase with decreasing specimen thickness.  相似文献   
10.
Abstract

Long term oxidation tests were carried out with a high-Cr ferritic steel at 800°C and 900°C in simulated cathode and anode gas of a solid oxide fuel cell (air and an Ar/H2/H2O mixture respectively). It was found that with decreasing sample thickness the life time of the steel decreases due to breakaway phenomena. This effect is caused by faster exhaustion of the chromium reservoir from the bulk alloy in the case of thinner components. During air exposure the oxidation rates increase with decreasing specimen thickness and this has to be taken into account in the calculation of the Cr-reservoir exhaustion. This thickness dependence is not found during the exposures in simulated anode gas. Hence, especially for thin walled components, the oxidation rates in anode gas are substantially smaller and thus the life times are longer than during air exposure. The differences in oxidation behaviour in the two environments are discussed on the basis of scale formation mechanisms involving microcrack formation in the surface oxide scale and depletion of major and minor alloying additions in the bulk alloy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号