首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   710篇
  免费   125篇
  国内免费   2篇
电工技术   1篇
综合类   9篇
化学工业   756篇
机械仪表   2篇
建筑科学   2篇
矿业工程   1篇
能源动力   1篇
水利工程   1篇
石油天然气   4篇
一般工业技术   60篇
  2024年   2篇
  2023年   3篇
  2022年   1篇
  2021年   25篇
  2020年   16篇
  2019年   15篇
  2018年   20篇
  2017年   25篇
  2016年   33篇
  2015年   34篇
  2014年   44篇
  2013年   42篇
  2012年   31篇
  2011年   53篇
  2010年   31篇
  2009年   28篇
  2008年   38篇
  2007年   49篇
  2006年   45篇
  2005年   38篇
  2004年   50篇
  2003年   59篇
  2002年   38篇
  2001年   27篇
  2000年   21篇
  1999年   23篇
  1998年   21篇
  1997年   13篇
  1996年   7篇
  1995年   3篇
  1993年   1篇
  1989年   1篇
排序方式: 共有837条查询结果,搜索用时 15 毫秒
1.
PP-g-MAH对PA6/PP/TLCP三元共混物的增容改性作用   总被引:2,自引:0,他引:2  
研究了PP-g-MAH对PA6/PP/TLCP三元共混体系的增容作用以及对共混物流变性能和力学性能的影响。通过共混物的DSC、SEM、POM、流变性能和力学性能测试,结果表明,PP-g-MAH对共混体系有明显的增容作用,共混物的力学性能(拉伸强度和冲击强度)得到提高;由于TLCP的加入,共混物的熔体粘度大大低于PA6的熔体粘度。  相似文献   
2.
Blends of polyamide and high‐density polyethylene show adequate properties for a large range of applications: they are used for the production of filaments, containers, and molding resins. The effect of the addition of 2 wt % of a compatibilizer, maleic anhydride grafted polyethylene, to the blend was studied and compared to the use of postconsumer polyethylene. The samples were extruded with single‐ and twin‐screw extruders with 25, 50, or 75 wt % f polyethylene, and the test specimens, molded by injection, were characterized by stress–strain tests, thermal properties, and morphologies. Processing the blends with postconsumer polyethylene in both extruders improved the mechanical properties in comparison to the blends processed with high‐density polyethylene and the compatibilizer. The morphologies of these blends showed that there was a decrease in the domain size of the disperse phase with the use of the compatibilizer or postconsumer polyethylene. The results indicate that for this blend, postconsumer polyethylene substituted, with advantages, for the necessity of a compatibilizer and the use of the high‐density polyethylene. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008.  相似文献   
3.
We have studied the effect of the amount Φc of a reactive compatibilizer on the rheological properties of a polyethylene/polyamide blend, under steady shear and transient extensional flows. Here, we propose to describe the viscosity η(γ) and the first normal stress coefficient γ1(γ) using a Carreau‐type power‐law model, which is a three‐parameter model. A single model is sufficient to express the behavior of γ1(γ) On the other hand, the complete η(γ) curve is described by the superposition of two Carreau models, in relation to the presence of two relaxation mechanisms. Moreover, the extentional viscosity ηE(?), estimated using the end pressure drop observed in capillary flow experiments, is expressed by a two‐parameter power‐law model.  相似文献   
4.
The reactive compatibilization of syndiotactic polystyrene (sPS)/oxazoline‐styrene copolymer (RPS)/maleic anhydride grafted ethylene‐propylene copolymer (EPR‐MA) blends is investigated in this study. First, the miscibility of sPS/RPS blends is examined by thermal analysis. The cold crystallization peak (Tcc) moved toward higher temperature with increased PRS, and, concerning enthalpy relaxation behaviors, only a single enthalpy relation peak was found in all aged samples. These results indicate that the sPS/RPS blend is miscible along the various compositions and RPS can be used in the reactive compatibilization of sPS/RPS/EPR‐MA blends. The reactive compatibilized sPS/RPS/EPR‐MA blends showed finer morphology than sPS/EPR‐MA physical blends and higher storage modulus (G') and complex viscosity (η*) when RPS contents were increased. Moreover, the impact strength of sPS/RPS/EPR‐MA increased significantly compared to sPS/EPR‐MA blend, and SEM micrographs after impact testing show that the sPS/RPS/EPR‐MA blend has better adhesion between the sPS matrix and the dispersed EPR‐MA phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2084–2091, 2002  相似文献   
5.
This article reports a study of some functionalized polyolefins evaluated as compatibilizers in polyethylene nanocomposites. The functionalized polymers were prepared by direct metallocene‐mediated copolymerizations of ethylene and a functional comonomer. The prepared nanocomposites were evaluated for mechanical and barrier property enhancement. A good combination of mechanical and barrier properties was obtained with the metallocene‐based functionalized polyethylene. The toughness–stiffness balance was better than or comparable to that achieved with conventional functionalized polymers such as maleic anhydride grafted polyethylene. The results also indicated that these metallocene‐based functionalized polyolefins, when used as compatibilizers, could have relatively higher molar masses and lower functionality than those of conventional post‐reactor‐modified compatibilizers, and so the drawbacks associated with the latter could be avoided. Their inherent properties could also further improve the final nanocomposite properties. This was attributed to the more homogeneous nature of metallocene‐catalyzed polymers in comparison with post‐reactor‐modified products. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1094–1100, 2004  相似文献   
6.
The effects of the blend composition and compatibilization on the morphology of linear low‐density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends were studied. The blends showed dispersed/matrix and cocontinuous phase morphologies that depended on the composition. The blends had a cocontinuous morphology at an EVA concentration of 40–60%. The addition of the compatibilizer first decreased the domain size of the dispersed phase, which then leveled off. Two types of compatibilizers were added to the polymer/polymer interface: linear low‐density polyethylene‐g‐maleic anhydride and LLDPE‐g phenolic resin. Noolandi's theory was in agreement with the experimental data. The conformation of the compatibilizer at the blend interface could be predicted by the calculation of the area occupied by the compatibilizer molecule at the interface. The effects of the blend ratio and compatibilization on the dynamic mechanical properties of the blends were analyzed from ?60°C to +35°C. The experiments were performed over a series of frequencies. The area under the curve of the loss modulus versus the temperature was higher than the values obtained by group contribution analysis. The loss tangent curve showed a peak corresponding to the glass transition of EVA, indicating the incompatibility of the blend system. The damping characteristics of the blends increased with increasing EVA content because of the decrease in the crystalline volume of the system. Attempts were made to correlate the observed viscoelastic properties of the blends with the morphology. Various composite models were used to model the dynamic mechanical data. Compatibilization increased the storage modulus of the system because of the fine dispersion of EVA domains in the LLDPE matrix, which provided increased interfacial interaction. Better compatibilization was effected at a 0.5–1% loading of the compatibilizer. This was in full agreement with the dynamic mechanical spectroscopy data. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4526–4538, 2006  相似文献   
7.
Vulcanizates of blends of ethylene–propylene–diene rubber and polyamide copolymers were prepared by reactive compatibilization. A reactive route was employed for compatibilizing these blends with the addition of chlorinated polyethylene (CPE). The influence of the compatibilizers, crosslinking agents, blend compositions, and addition modes of the compatibilizers on the mechanical properties of the blends was investigated. The morphologies of the blends were determined with scanning electron microscopy. The addition of CPE was found to reduce the particle size of the dispersed phase remarkably. The stability of the blends with compatibilizers was measured by high‐temperature thermal aging. The mechanical properties were examined by stress–strain measurements and dynamic mechanical thermal measurements; the addition of polyamide copolymers caused significant improvements in the tensile properties of these blends.© 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1727–1736, 2003  相似文献   
8.
The purpose of this work was to study how mineral fillers would behave in a polypropylene (PP) matrix when PP modified with maleic anhydride (MA) and/or itaconic acid (IA) was used as a coupling agent in the preparation of mineral‐filled PP composites. The composites were characterized with tensile mechanical measurements and morphological analysis. The optimum amount of the coupling agent to be used to obtain composites with improved mechanical properties was established. The results indicated that these coupling agents enhanced the tensile strength of the composites significantly, and the extent of the coupling effect depended on the nature of the interface that formed. The incorporation of coupling agents enhanced the resistance to deformation of the composite. The behavior of IA‐modified PP as a coupling agent was similar to that of a commercial MA‐modified PP for the filled PP composites. Evidence of improved interfacial bonding was revealed by scanning electron microscopy studies, which examined the surfaces of fractured tensile test specimens; their microstructures confirmed the mechanical results with respect to the observed homogeneous or optimized dispersion of the mineral‐filler phase in these composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2343–2350, 2007  相似文献   
9.
Polyamide and polypropylene (PP) are two important classes of commercial polymers; however, their direct mixing leads to incompatible blends with poor properties. Polypropylene functionalized with glycidyl methacrylate (PP‐GMA) was used as a compatibilizer in blends of PP and nylon 6, because of the possible reaction of ? NH2 and ? COOH groups with the epoxide group of GMA. Two types of nylon 6 with different ratios between ? NH2 and ? COOH groups were used. The one with higher concentration of ? COOH groups was less compatible with PP in a binary blend. When PP‐GMA was used as a compatibilizer, a better dispersion of nylon in the PP matrix was obtained together with better mechanical properties for both nylons used in this work. © 2001 Society of Chemical Industry  相似文献   
10.
The morphology and mechanical properties of PVC/SMA‐g‐PA6 blends were investigated in this paper. Graft to polymer SMA‐g‐PA6 was prepared via a solution graft reaction between SMA and PA6. FTIR test evidences the occurrence of the graft reaction between SMA and PA6. DSC analysis shows that SMA‐g‐PA6 has a lower melting point of 187°C, which may result in a decrease in crystallinity of PA6 and thus enable efficient blending of SMA‐g‐PA6 and PVC. Compatibilization was evidenced by the dramatic increase in mechanical properties, the smaller particle size and finer dispersion of PA6 in PVC matrix, and, further, a cocontinuous morphology at 16 wt % SMA‐g‐PA6 content. SMA‐g‐PA6 from the solution graft reaction can toughen and reinforce PVC material. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 432–439, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号