首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8974篇
  免费   519篇
  国内免费   135篇
电工技术   35篇
综合类   409篇
化学工业   6341篇
金属工艺   51篇
机械仪表   59篇
建筑科学   103篇
矿业工程   14篇
能源动力   162篇
轻工业   439篇
水利工程   5篇
石油天然气   489篇
武器工业   18篇
无线电   138篇
一般工业技术   1223篇
冶金工业   47篇
原子能技术   36篇
自动化技术   59篇
  2024年   24篇
  2023年   42篇
  2022年   74篇
  2021年   116篇
  2020年   123篇
  2019年   143篇
  2018年   122篇
  2017年   212篇
  2016年   201篇
  2015年   177篇
  2014年   329篇
  2013年   455篇
  2012年   483篇
  2011年   519篇
  2010年   451篇
  2009年   459篇
  2008年   426篇
  2007年   586篇
  2006年   551篇
  2005年   500篇
  2004年   438篇
  2003年   420篇
  2002年   405篇
  2001年   377篇
  2000年   316篇
  1999年   314篇
  1998年   288篇
  1997年   231篇
  1996年   156篇
  1995年   126篇
  1994年   125篇
  1993年   86篇
  1992年   104篇
  1991年   78篇
  1990年   43篇
  1989年   27篇
  1988年   14篇
  1987年   7篇
  1986年   8篇
  1985年   18篇
  1984年   13篇
  1983年   16篇
  1982年   23篇
  1981年   1篇
  1980年   1篇
排序方式: 共有9628条查询结果,搜索用时 15 毫秒
1.
Blend films of two types (I and II) were prepared by mixing Antheraea mylitta silk fibroin (AMF) and gelatin solution in various blend ratios via the solution casting method. Two different crosslinkers, namely glutaraldehyde and genipin, were used during blend preparation. The structural characteristics and thermal properties of the blend films were examined by Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), Thermogravimetric analysis (TGA) and Diffrential scanning calorimetery (DSC). The FTIR spectra showed conformational alterations in type I blend films while type II films attained high β‐sheet crystallinity. The XRD diffractograms presented a high degree of crystallinity in type II blend films compared to type I, which showed an almost amorphous structure. Further, thermal and biological studies were conducted on type II films. According to the TGA thermograms, the degradation temperature of the crosslinked blend films shifted compared to pure gelatin and pure AMF films. Partial miscibility of the two components was indicated by DSC thermograms of the blends. The high water uptake capacity of type II blend films was found to imitate hydrogel behaviour. The blend films did not show any toxicity in 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay and supported L929 fibroblast cell spreading and proliferation. The biodegradation of the blend films was significantly faster than the pure silk film. © 2020 Society of Industrial Chemistry  相似文献   
2.
In this study, blends of the bio-based poly(limonene carbonate) (PLimC) with different commodity polymers are investigated in order to explore the potential of PLimC toward generating more sustainable polymer materials by reducing the amount of petro- or food-based polymers. PLimC is employed as minority component in the blends. Next to the morphology and thermal properties of the blends the impact of PLimC on the mechanical properties of the matrix polymers is studied. The interplay of incompatibility and zero-shear melt viscosity contrast determines the blend morphology, leading for all blends to a dispersed droplet morphology for PLimC. Blends with polymers of similar structure to PLimC (i.e., aliphatic/aromatic polyester) show the best performance with respect to mechanical properties, whereas blends with polystyrene or poly(methyl methacrylate) are too brittle and polyamide 12 blends show very low elongations at break. In blends with Ecoflex (poly(butylene adipate-co-terephthalate)) and Arnitel EM400 (copoly(ether ester)) with poly(butylene terephthalate) hard and polytetrahydrofuran soft segments) a threefold increase in E-modulus can be achieved, while keeping the elongation at break at reasonable high values of ≈200%, making these blends highly interesting for applications.  相似文献   
3.
The work reported involved the fabrication of an electrospun tubular conduit of a gelatin and polycaprolactone (PCL) blend as an adventitia‐equivalent construct. Gelatin was included as the matrix for increased biocompatibility with the addition of PCL for durability. This is contrary to most of the literature available for biomaterials based on blends of gelatin and PCL where PCL is the major matrix. The work includes the assiduous selection of key electrospinning parameters to obtain smooth bead‐free fibres with a narrow distribution of pore size and fibre diameter. Few reports elucidate the optimization of all electrospinning parameters to fabricate tubular conduits with a focus on obtaining homogeneous pores and fibres. This stepwise investigation would be unique for the fabrication of gelatin–PCL electrospun tubular constructs. The fabricated microfibrous gelatin–PCL constructs had pores of size ca 50–100 μm reportedly conducive for cell infiltration. The measured value of surface roughness of 57.99 ± 17.4 nm is reported to be favourable for protein adhesion and cell adhesion. The elastic modulus was observed to be similar to that of the tunica adventitia of the native artery. Preliminary in vitro and in vivo biocompatibility tests suggest safe applicability as a biomaterial. Minimal cytotoxicity was observed using MTT assay. Subcutaneous implantation of the scaffold demonstrated acute inflammation which decreased by day 15. The findings of this study could enable the fabrication of smooth bead‐free microfibrous gelatin–PCL tubular construct as viable biomaterial which can be included in a bilayer or a trilayer scaffold for vascular tissue engineering. © 2019 Society of Chemical Industry  相似文献   
4.
Surface functionalization and modification including the grafting process are effective approaches to improve and enhance the reverse osmosis (RO) membrane performance. This work is aimed to synthesize grafted/crosslinked cellulose acetate (CA)/cellulose triacetate (CTA) blend RO membranes using N-isopropylacrylamide (N-IPAAm) as a monomer and N,N-methylene bisacrylamide (MBAAm) as a crosslinker. The morphology of these membranes was analyzed by scanning electron microscopy and their surface roughness was characterized by atomic force microscopy. The performance of these membranes was evaluated through measuring two major parameters of salt rejection and water flux using RO unit at variable operating pressures. It was noted that the surface average roughness obviously decreased from 148 nm for the pure CA/CTA blend membrane with 2.5% CTA to 110 nm and 87 nm for the grafted N-IPAAm and grafted/crosslinked N-IPAAM/MBAAm/CA/CTA-RO membranes, respectively. Moreover, the contact angle decreased from 51.98° to 47.6° and 43.8° after the grafting and crosslinking process. The salt rejection of the grafted CA/CTA-RO membrane by 0.1% N-IPAAm produced the highest value of 98.12% and the water flux was 3.29 L/m2h at 10 bar.  相似文献   
5.
In this research, maleic anhydride-α-octadecene copolymer and its derivative with phenylethylamine was synthesized and its effect on the crystallization of paraffins was investigated. This derivative, when added into second cut of vacuum gas oil and forth cut of vacuum gas oil, increases the size and improves aggregation of paraffin crystals observed by polarizing light microscopy, increases onset temperature and enthalpy of paraffin crystallization determined by differential scanning calorimetry, improves the dewaxing efficiency with dosage of 100?ppm explored by MEK-toluene dewaxing.  相似文献   
6.
The rapid development of the science and technology of organic semiconductors has already led to mass application of organic light‐emitting diodes (OLEDs) in television monitors of outstanding quality as well as in a large variety of smaller displays found in smartphones, tablets, and other gadgets, while introduction of the technology to the illumination sector is imminent. Notably, the requirements of all such applications for emission in the visible range of the electromagnetic spectrum are well tuned to the optical and electronic properties of typical organic semiconductors, thereby representing relatively “low‐hanging fruits,” in terms of material development and exploitation. However, the question arises as to whether developing materials suited for efficient near‐infrared (NIR, 700–1000 nm) emission is possible, and, crucially, desirable to enable new classes of applications spanning from through‐space, short‐range communications to biomedical sensors, night vision, and more generally security applications to name but a few. Here, the major fundamental hurdles to be overcome to achieve efficient NIR emission from organic π‐conjugated systems are discussed, recent progress is reviewed, and an outlook for further development of both materials and applications is provided.  相似文献   
7.
首次对茂金属聚丙烯(miPP)/齐格勒-纳塔聚丙烯(ziPP)共混体系的流动性进行了系统的研究。研究发现,在miPP/ziPP共混体系中,miPP含量的变化改变了共混体系的相结构,这种相结构会随着温度和剪切速率的变化而产生明显的变化,从而改变了体系的流动性能,且该共混体系在不同剪切速率下的流动曲线可以分别通过两个模型进行模拟。  相似文献   
8.
The structure and properties of high density polyethylene (HDPE) functionalized by ultraviolet irradiation at different light intensities in air were studied by electron analysis, FTIR spectroscopy, contact angle with water, differential scanning calorimetry and mechanical properties measurement. The results show that oxygen‐containing groups such as C?O, C—O and C(?O)O were introduced onto the molecular chain of HDPE following irradiation, and the rate and efficiency of HDPE functionalization increased with enhancement of irradiation intensity. After irradiation, the melting temperature, contact angle with water and notched impact strength of HDPE decreased, the degree of crystallinity increased, and their variation amplitude increased with irradiation intensity. Compared with HDPE, the yield strength of HDPE irradiated at lower light intensity (32 W m?2 and 45 W m?2) increases monotonically with irradiation time, and the yield strength of HDPE irradiated at higher light intensity (78 W m?2) increases up to 48 h and then decreased with further increase in irradiation time. The irradiated HDPE behaved as a compatibilizer in HDPE/polycarbonate (PC) blends, and the interface bonding between HDPE and PC was ameliorated. After adding 20 wt% HDPE irradiated at 78 W m?2 irradiation intensity for 24 h to HDPE/PC blends, the tensile yield strength and notched Izod impact strength of the blend were increased from 26.3 MPa and 51 J m?1 to 30.2 MPa and 158 J m?1, respectively. Copyright © 2003 Society of Chemical Industry  相似文献   
9.
合成丁苯嵌段共聚物的影响因素   总被引:1,自引:0,他引:1  
李毅  曹润  赵玉中  王毅 《弹性体》2003,13(5):21-23
采用负离子溶液聚合方法制备了丁苯嵌段共聚物,研究了引发剂、活化剂、偶合剂、终止剂对聚合产物性能的影响。  相似文献   
10.
乙烯基硅氧烷改性苯丙乳液的研究   总被引:2,自引:0,他引:2  
在苯乙烯 -丙烯酸酯乳液共聚反应后期 ,加入少量乙烯基硅氧烷 ,制得改性苯丙乳液 ,通过红外光谱初步确定了聚合物结构。研究了反应温度、反应时间、有机硅加入方式、乳化剂用量等因素对反应进程、乳液稳定性及涂膜性能的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号