首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   3篇
  国内免费   2篇
综合类   1篇
化学工业   13篇
机械仪表   1篇
矿业工程   1篇
轻工业   3篇
无线电   3篇
自动化技术   4篇
  2022年   5篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2006年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
The use of hydrogel in cartilage tissue engineering is especially popular due to its high hydrophilic property which is similar to native cartilage matrix. Alginate hydrogel was used as a transient scaffold material to facilitate chondrocyte proliferation into a three‐dimensional scaffold‐free living hyaline cartilaginous graft (LhCG). As LhCG is purely cell‐based and has a marked resemblance to native hyaline cartilage, it served as an excellent in vitro platform for studying the endochondral ossification pathway. Due to the complexity of events involved throughout endochondral ossification, this study only focuses on early stages of the process where it involves chondrocyte hypertrophy and blood vessel invasion. Human umbilical vein endothelial cells (HUVECs) were selected as the target cells for possible endothelialization in the LhCG template. They were seeded onto the LhCG construct and subjected to vascular endothelial growth factor (VEGF) treatment. Results suggested that VEGF is indeed a potent driving force for initiation of the endochondral pathway. It alone is sufficient to induce hypertrophy in chondrocytes and the corresponding expression of osteogenic genes with or without the presence of HUVECs in the LhCG template. On the other hand, the effect of HUVECs in the LhCG system was less evident. It is hypothesized that this is attributed to the preservation of anti‐angiogenic properties in primary chondrocytes from the LhCG construct, inhibiting HUVECs from endothelialization in the LhCG+HUVEC construct. Based on the outcome from this study, it is recommended that hypertrophy in chondrocytes should be induced prior to endothelial cell introduction so that the microenvironment will be altered to favor angiogenesis within the cartilaginous template. © 2013 Society of Chemical Industry  相似文献   
2.
The term heterotopic ossification (HO) describes bone formation in tissues where bone is normally not present. Musculoskeletal trauma induces signalling events that in turn trigger cells, probably of mesenchymal origin, to differentiate into bone. The aetiology of HO includes extremely rare but severe, generalised and fatal monogenic forms of the disease; and as a common complex disorder in response to musculoskeletal, neurological or burn trauma. The resulting bone forms through a combination of endochondral and intramembranous ossification, depending on the aetiology, initiating stimulus and affected tissue. Given the heterogeneity of the disease, many cell types and biological pathways have been studied in efforts to find effective therapeutic strategies for the disorder. Cells of mesenchymal, haematopoietic and neuroectodermal lineages have all been implicated in the pathogenesis of HO, and the emerging dominant signalling pathways are thought to occur through the bone morphogenetic proteins (BMP), mammalian target of rapamycin (mTOR), and retinoic acid receptor pathways. Increased understanding of these disease mechanisms has resulted in the emergence of several novel investigational therapeutic avenues, including palovarotene and other retinoic acid receptor agonists and activin A inhibitors that target both canonical and non-canonical signalling downstream of the BMP type 1 receptor. In this article we aim to illustrate the key cellular and molecular mechanisms involved in the pathogenesis of HO and outline recent advances in emerging molecular therapies to treat and prevent HO that have had early success in the monogenic disease and are currently being explored in the common complex forms of HO.  相似文献   
3.
Osteoarthritis (OA) is the most common type of arthritis and is associated with wear and tear, aging, and inflammation. Previous studies revealed that several antimicrobial peptides are up-regulated in the knee synovium of patients with OA or rheumatoid arthritis. Here, we investigated the functional effects of cathelicidin-related antimicrobial peptide (Cramp) on OA pathogenesis. We found that Cramp is highly induced by IL-1β via the NF-κB signaling pathway in mouse primary chondrocytes. Elevated Cramp was also detected in the cartilage and synovium of mice suffering from OA cartilage destruction. The treatment of chondrocytes with Cramp stimulated the expression of catabolic factors, and the knockdown of Cramp by small interfering RNA reduced chondrocyte catabolism mediated by IL-1β. Moreover, intra-articular injection of Cramp into mouse knee joints at a low dose accelerated traumatic OA progression. At high doses, Cramp affected meniscal ossification and tears, leading to cartilage degeneration. These findings demonstrate that Cramp is associated with OA pathophysiology.  相似文献   
4.
In a previous study using transgenic mice ectopically expressing Hoxa2 during chondrogenesis, we associated the animal phenotype to human idiopathic proportionate short stature. Our analysis showed that this overall size reduction was correlated with a negative influence of Hoxa2 at the first step of endochondral ossification. However, the molecular pathways leading to such phenotype are still unknown. Using protein immunodetection and histological techniques comparing transgenic mice to controls, we show here that the persistent expression of Hoxa2 in chondrogenic territories provokes a general down-regulation of the main factors controlling the differentiation cascade, such as Bapx1, Bmp7, Bmpr1a, Ihh, Msx1, Pax9, Sox6, Sox9 and Wnt5a. These data confirm the impairment of chondrogenic differentiation by Hoxa2 overexpression. They also show a selective effect of Hoxa2 on endochondral ossification processes since Gdf5 and Gdf10, and Bmp4 or PthrP were up-regulated and unmodified, respectively. Since Hoxa2 deregulation in mice induces a proportionate short stature phenotype mimicking human idiopathic conditions, our results give an insight into understanding proportionate short stature pathogenesis by highlighting molecular factors whose combined deregulation may be involved in such a disease.  相似文献   
5.
The human TGF-β/SMAD7 signaling has been recognized as an attractive target of heterotopic ossification (HO). Here, we report a successful rational design of cyclic peptides to disrupt the signaling pathway by targeting TGF-β–receptor complex. The intermolecular interaction between TGF-β and its cognate receptor is characterized in detail using molecular dynamics simulation, binding energetic analysis, and alanine scanning. With the computational analysis a binding loop of receptor protein is identified that plays an essential role in the peptide-mediated TGF-β–receptor interaction. Subsequently, the loop is stripped from the protein context to generate a linear peptide segment, which possesses considerable flexibility and intrinsic disorder, and thus would incur a large entropy penalty upon binding to TGF-β. In order to minimize the unfavorable entropic effect, the linear peptide is cyclized by adding a disulfide bond between the N- and C-terminal cysteine residues of the peptide, resulting in a cyclic peptide. In vitro fluorescence anisotropy assays substantiate that the cyclic peptide can bind tightly to TGF-β with determined Kd value of 54 μM. We also demonstrated that structural optimization can further improve the peptide affinity by site-directed mutagenesis of selected residues based on the computationally modeled complex structure of TGF-β with the cyclic peptide.  相似文献   
6.
Tissue engineering strategies promote bone regeneration for large bone defects by stimulating the osteogenesis route via intramembranous ossification in engineered grafts, which upon implantation are frequently constrained by insufficient integration and functional anastomosis of vasculature from the host tissue. In this study, we developed a hybrid biomaterial incorporating decellularized cartilage extracellular matrix (CD-ECM) as a template and silk fibroin (SF) as a carrier to assess the bone regeneration capacity of bone marrow-derived mesenchymal stem cells (hBMSC’s) via the endochondral ossification (ECO) route. hBMSC’s were primed two weeks for chondrogenesis, followed by six weeks for hypertrophy onto hybrid CD-ECM/SF or SF alone scaffolds and evaluated for the mineralized matrix formation in vitro. Calcium deposition biochemically determined increased significantly from 4-8 weeks in both SF and CD-ECM/SF constructs, and retention of sGAG’s were observed only in CD-ECM/SF constructs. SEM/EDX revealed calcium and phosphate crystal localization by hBMSC’s under all conditions. Compressive modulus reached a maximum of 40 KPa after eight weeks of hypertrophic induction. μCT scanning at eight weeks indicated a cloud of denser minerals in groups after hypertrophic induction in CD-ECM/SF constructs than SF constructs. Gene expression by RT-qPCR revealed that hBMSC’s expressed hypertrophic markers VEGF, COL10, RUNX2, but the absence of early hypertrophic marker ChM1 and later hypertrophic marker TSBS1 and the presence of osteogenic markers ALPL, IBSP, OSX under all conditions. Our data indicate a new method to prime hBMSC’S into the late hypertrophic stage in vitro in mechanically stable constructs for ECO-mediated bone tissue regeneration.  相似文献   
7.
Improvements in medical care, nutrition and social care are resulting in a commendable change in world population demographics with an ever increasing skew towards an aging population. As the proportion of the world’s population that is considered elderly increases, so does the incidence of osteodegenerative disease and the resultant burden on healthcare. The increasing demand coupled with the limitations of contemporary approaches, have provided the impetus to develop novel tissue regeneration therapies. The use of stem cells, with their potential for self-renewal and differentiation, is one potential solution. Adipose-derived stem cells (ASCs), which are relatively easy to harvest and readily available have emerged as an ideal candidate. In this review, we explore the potential for ASCs to provide tangible therapies for craniofacial and long bone skeletal defects, outline key signaling pathways that direct these cells and describe how the developmental signaling program may provide clues on how to guide these cells in vivo. This review also provides an overview of the importance of establishing an osteogenic microniche using appropriately customized scaffolds and delineates some of the key challenges that still need to be overcome for adult stem cell skeletal regenerative therapy to become a clinical reality.  相似文献   
8.
9.
目的:探究南极磷虾油(Antarctic krill oil,AKO)对骨质疏松模型小鼠骨折愈合的促进作用。方法:采用C57BL/6J雌性小鼠,通过双侧去卵巢术建立骨质疏松模型;随后行右胫开放性骨折手术并随机分为一般性骨折对照组、骨质疏松性骨折模型组、阳性对照组、AKO组。于骨折后5、11、24、35、56 d取材,动态分析AKO对小鼠血清相关指标、骨痂组织形态学、显微结构和生物力学以及软骨内成骨关键基因表达的影响。结果:酶联免疫吸附测定结果表明AKO能显著升高血清中血管内皮生长因子(vascular endothelial growth factor,VEGF)质量浓度及骨碱性磷酸酶活力;骨痂苏木精-伊红染色及微型计算机断层扫描结果显示AKO能够促进软骨痂向硬骨痂转化,并改善骨痂微结构,加速骨痂重塑;生物力学检测结果显示AKO可增强骨性骨痂生物力学性能;实时荧光定量聚合酶链式反应结果显示,AKO可显著提高血管入侵相关因子(VEGF、血小板衍生生长因子和血管紧张素1)的mRNA表达(P<0.05),显著降低软骨细胞增殖和肥大相关基因(聚集蛋白聚糖A g g r e c a n和Col10a)的表达(P<0.05),显著升高软骨基质降解因子MMP-13以及骨生成相关基因(Col1a、骨钙素和骨形态发生蛋白2)的表达(P<0.05),提示AKO可通过调控软骨内成骨关键基因的表达,加速软骨内骨化进程。结论:AKO通过促进软骨内成骨及骨痂重塑,加速骨质疏松模型小鼠骨折愈合,提高愈合质量。  相似文献   
10.
虚拟网络映射问题研究及其进展   总被引:1,自引:0,他引:1  
李小玲  王怀民  丁博  郭长国  李小勇 《软件学报》2012,23(11):3009-3028
随着互联网的快速发展,现有的互联网架构已经难以满足互联网新型应用的发展,在一定程度上呈现出僵化现象.网络虚拟化被认为是解决网络僵化问题的重要途径,其中的虚拟网络映射问题研究如何将具有虚拟节点和虚拟链路约束的虚拟网络映射到基础设施网络中.首先给出了虚拟网络映射问题的形式化定义,分析了虚拟网络映射问题面临的挑战性和求解目标;其次,对各种虚拟网络映射问题的求解方法加以分类,在分类的基础上,介绍了各种典型的求解方法并进行了对比;最后总结了各种虚拟网络映射问题求解方法,并指出了未来的研究趋势.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号