首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9659篇
  免费   712篇
  国内免费   638篇
电工技术   456篇
技术理论   2篇
综合类   565篇
化学工业   2304篇
金属工艺   342篇
机械仪表   335篇
建筑科学   1505篇
矿业工程   137篇
能源动力   358篇
轻工业   983篇
水利工程   113篇
石油天然气   304篇
武器工业   63篇
无线电   878篇
一般工业技术   982篇
冶金工业   184篇
原子能技术   1109篇
自动化技术   389篇
  2024年   31篇
  2023年   140篇
  2022年   184篇
  2021年   296篇
  2020年   267篇
  2019年   227篇
  2018年   248篇
  2017年   281篇
  2016年   351篇
  2015年   324篇
  2014年   535篇
  2013年   777篇
  2012年   642篇
  2011年   812篇
  2010年   616篇
  2009年   663篇
  2008年   573篇
  2007年   656篇
  2006年   585篇
  2005年   437篇
  2004年   398篇
  2003年   374篇
  2002年   261篇
  2001年   220篇
  2000年   182篇
  1999年   144篇
  1998年   125篇
  1997年   100篇
  1996年   84篇
  1995年   93篇
  1994年   57篇
  1993年   53篇
  1992年   69篇
  1991年   40篇
  1990年   33篇
  1989年   29篇
  1988年   26篇
  1987年   14篇
  1986年   13篇
  1985年   14篇
  1984年   10篇
  1983年   4篇
  1982年   9篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1965年   1篇
  1959年   5篇
  1958年   1篇
排序方式: 共有10000条查询结果,搜索用时 515 毫秒
1.
2.
Narrow linewidth light source is a prerequisite for high-performance coherent optical communication and sensing.Waveguide-based external cavity narrow linewidth semiconductor lasers(WEC-NLSLs)have become a competitive and attractive candidate for many coherent applications due to their small size,volume,low energy consumption,low cost and the ability to integrate with other optical components.In this paper,we present an overview of WEC-NLSLs from their required technologies to the state-of-the-art progress.Moreover,we highlight the common problems occurring to current WEC-NLSLs and show the possible approaches to resolving the issues.Finally,we present the possible development directions for the next phase and hope this review will be beneficial to the advancements of WEC-NLSLs.  相似文献   
3.
Biomass gasification technology under microwave irradiation is a new and novel method, and the energy conversion performances during the process play a guiding role in improving the energy conversion efficiencies and developing the gasification simulation models. In order to improve the energy utilization efficiency of microwave biomass gasification system, this study investigated and presented the energy conversion performances during biomass gasification process under microwave irradiation, and these were materialized through detailing (a) the energy conversion performance in the microwave heating stage, and (b) the energy conversion performance in the microwave assisted biomass gasification stage. Different forms of energies in the biomass microwave gasification process were calculated by the method given in this study based on the experimental data. The results showed that the useful energy (energy in silicon carbide (SiC), 18.73 kJ) accounted for 31.22% of the total energy input (electrical energy, 60.00 kJ) in the heating stage, and the useful energy (energy in the products, 758.55 kJ) accounted for 63.41% of the total energy input (electrical and biomass energy, 1196.28 kJ) in the gasification stage. During the whole biomass gasification process under microwave irradiation, the useful energy output (energy in the products, 758.55 kJ) accounted for 60.38% of the total energy input (electrical and biomass energy, 1256.28 kJ), and the energy in the gas (523.40 kJ) product played a dominate role in product energy (758.55 kJ). The energy loss mainly included the heat loss in the gas flow (89.20 kJ), magnetron loss (191.80 kJ) and microwave dissipation loss (198.00 kJ), which accounted for 7.10%, 15.27% and 15.76% of the total energy, respectively. The contents detailed in this study not only presented the energy conversion performances during microwave assisted gasification process but also supplied important data for developing gasification simulation models.  相似文献   
4.
为解决定距螺旋桨与船用主机在船舶运行工况的机桨匹配问题,结合船舶系泊和航行试验的相关标准,分析和归纳船舶运行数据,将实船测试与船机桨匹配理论计算相结合,得出运输船和拖轮在常用工况及特殊工况下定距螺旋桨对主机外特性的定量要求,为配套不同细分市场时船用主机的优化和开发提供参考依据。  相似文献   
5.
In this work, 0.5TRPO•0.5Gd2Zr2O7 ceramic with an average grain size of only ∼15 nm was prepared by a high pressure (5 GPa/520 °C) sintering method. Phase evolutions and microstructure changes of the as-fabricated super nano and micron-grained ceramics under a high-dose displacement damage induced by 300 keV Kr2+ ions were investigated. The results show that the super nano-grained ceramic has low degree of amorphization, obvious grain growth (2–3 times in grain size) and big Kr bubbles (10–68 nm) formation after irradiation. The micron-grained ceramic was severely amorphized after irradiation and many microcracks were formed parallel to its surface. The formation mechanism of Kr bubbles in the super nano-grained ceramic is on account of grain boundary diffusion and migration induced by the accumulation of the injecting Kr ions and irradiation defects. Nevertheless, microcracks formed in the micron-grained sample are caused by the accumulation of Kr atoms.  相似文献   
6.
《Ceramics International》2015,41(7):8614-8622
SnO2–ZnO nanocomposite thin films, prepared by a simple carbothermal reduction based vapor deposition method, were irradiated with 8 MeV Si3+ ions for engineering the morphological and optical properties. The surface morphology of the nanocomposites was studied by atomic force microscopy (AFM), while the optical properties were investigated by photoluminescence spectroscopy (PL) and Raman spectroscopy. AFM studies on the irradiated samples revealed growth of nanoparticles at lower fluence and a significant change in surface morphology leading to the formation of nanosheets and their aggregates at higher fluences. A tentative mechanism underlying the observed ion induced evolution of surface morphology of SnO2–ZnO nanocomposite is proposed. PL studies revealed strong enhancement in the UV emissions from the nanocomposite thin film at lower fluence, while a drastic decrease in the UV emissions along with a significant enhancement in the defect emissions has been observed at higher fluences.  相似文献   
7.
The aim of this article is to synthesis tungsten oxide (WO3) nanoparticle along with Manganese (3 wt% and 10 wt%) by Microwave irradiation method. The physical properties of the synthesized Manganese doped Tungsten oxide materials were characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscope (TEM), UV-Diffuse Reflectance Spectroscopy, SEM-EDAX and Photoluminescence studies. The predominant peaks obtained in X-ray diffraction pattern reveal the crystalline nature of the nanoparticles and the structure belongs to Monoclinic for pure and Mn doped WO3. FTIR analysis shows the presence of Tungsten and oxygen in the synthesis material and verified with EDAX. TEM analysis shows both pristine and Mn doped WO3 nanopaticles. They are having spherical shaped morphology with average particle size from 35 to 40 nm. UV-DRS revealed that the bandgap energy for pure and Manganese doped WO3 are discussed in this article. The Scanning Electron Microscope analysis shows the plate like morphology for pure WO3 and the morphology were decreased by doping Manganese. The defects and oxygen deficiencies were analysed by photoluminescence spectroscopy.  相似文献   
8.
Cyclic tension and bend tests were performed on heat-resistant 12Cr1MoV steel specimens in as-supplied condition as well as after Zr+ ion beam surface irradiation. Distinct differences in strain induced relief, as well in cracking pattern of modified surface layer were observed by optical microscopy and interference profilometry. Changes in subsurface layer are characterized by means of nano- and microindentation and fractography of fracture surfaces (with the help of scanning electron microscopy). It is shown that the main influence on mechanical properties is mostly induced by thermal treatment during irradiation rather than formation of a 2 μm thick layer doped with Zr. The differences in deformation behavior may be explained by physical mesomechanics concepts.  相似文献   
9.
Polyvinyl chloride (PVC) is the most popular insulating material for electric wiring instruments. However, an exothermic reaction above 150 °C may cause deterioration of the insulating properties of PVC. Therefore, it is important to clarify the heat degradation in PVC, not only to investigate the ignition of electrical wiring products but also to use electrical products safely. It is known that ultraviolet (UV) irradiation causes chemical deterioration of PVC and an increase in its conductivity. Generally, it has been thought that the electrical breakdown properties, electrical conduction, and insulating performance are affected by space charge accumulation in an insulating material. A high temperature pulsed electroacoustic (PEA) system usable up to 250 °C has been developed, and the PEA system can measure the space charge distribution and conduction current in the high temperature range simultaneously. In this investigation, the space charge distribution and conduction current were measured up to electrical breakdown in a non‐UV irradiated sample (normal PVC) and in 353 nm and 253 nm UV‐irradiated PVC samples in the range from room temperature to 200 °C in a DC electric field. In the short wavelength UV irradiated PVC sample (253 nm, 300 h), a deterioration of breakdown strength at 90 °C to 150 °C and negative packet‐like charges were observed at 60 °C and 100 °C, a positive charge accumulated in front of both the anode and cathode above 90 °C, and a higher electric field near the cathode side because the positive charge of the cathode side was greater.  相似文献   
10.
通过对大直径平底负压容器平底板的设计计算,平底板计算厚度很厚。通过分析,提出了对平底板采取加强措施,从而减薄平底板计算厚度的方法。该容器在实际生产过程中性能可靠、稳定,对类似设备设计具有借鉴意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号